

Molecular modelling and simulation of adsorption and wetting of structured surfaces

M. T. Horsch, S. Becker, M. Kohns, S. Werth, and H. Hasse

Technische Universität Kaiserslautern, Germany

Newport, Shropshire, 10th September 2014 CCP5 Annual Meeting

Adsorption at vapour-liquid interfaces

Adsorption at vapour-liquid interfaces

Surface tension and adsorption are related by

 $dy = -\zeta dT - \Sigma \Gamma_i d\mu_i$ (Gibbs adsorption equation)

Surface tension of real fluids

2CLJQ models:

- 2 LJ centres
- Quadrupole

Fit of parameters σ , ε , L, Q to VLE data of 29 fluids by Stoll et al.

Deviation:

 $\delta \rho' \approx 1\%$

Adsorption at real component surfaces

Titanium components

- Covered by oxide layer
- Possibly rough and/or intentionally patterned surface
- Surface may be contaminated with organic matter

First step: Reliable molecular simulation of water adsorbed on a clean and planar surface.

Quantum mechanical calculations

Computation of the electrostatic potential:

dry rutile surface

physisorbed water

chemisorbed water

VASP simulation parameters (structure optimization with PBE functional): Plane-wave cutoff at 282 eV, *k*-point spacing 0.5 Å⁻¹, *O* s pseudopotential.

10th September 2014

Adsorption by grand canonical simulation

- Electrostatic grid from VASP
- Lennard-Jones parameters from literature

Further open issues:

- Influence of chemisorption on the electrostatic grid
- Influence of organic matter adsorbed at the surface
- Surface roughness and hysterisis effects
- Influence of the water model

• Etc. ...

Adsorption by grand canonical simulation

The fluid-solid interaction has a greater impact than the pure fluid model.

Sessile droplet on a planar surface

LJTS fluid (with σ and ε) on a planar LJTS substrate (with ε_{s} = 100 ε):

Correlation of the density profile by

$$\rho(R, y) = f(R) \cdot [h(y) + 1],$$

with exponentially decaying oscillations of h(y), in terms of the distance y from the wall,

and a tanh type profile f(R) over the distance R from the droplet centre.

The fluid-solid contact angle is determined at the intersection of the wall surface with the vapour-liquid interface given by the correlation expression.

10th September 2014

Influence of the fluid-wall interaction

Variation of the ζ parameter (unlike interaction) on a substrate with $\sigma_s = \sigma$:

The transition from solvophilic to solvophobic surfaces is independent of T.

10th September 2014

Critical wetting transition

At high temperatures, critical wetting or dewetting is observed ($\sigma_s = \sigma$):

Correlation: $\cos \theta$ proportional to $(1 - T/T_{c})^{-2/3} + 1$ as well as $\zeta - \zeta_{\perp}$.

Critical wetting transition

At high temperatures, critical wetting or dewetting is observed:

Correlation: $\cos \theta$ proportional to $(1 - T/T_{c})^{-2/3} + 1$ as well as $\zeta - \zeta_{\perp}$.

Influence of the substrate model

Wall model and fluid-wall interaction influence the interaction well depth W.

Lines: General correlation $\theta(T^*, W^*, \rho)$ for contact angles of LJ systems.

Patterned surfaces: Epitaxial Cassie state

Epitaxial Cassie state

Due to contact line pinning, the contact angle at an edge may significantly exceed the value corresponding to a perfectly planar surface.

Patterned surfaces: Epitaxial Cassie state

Epitaxial Cassie state

Line pinning does not occur exactly at the edge. The contact line is shifted inward due to the presence of a precursor layer.

Patterned surfaces: Epitaxial Cassie state

Epitaxial Cassie state

10th September 2014

M. T. Horsch, S. Becker, M. Kohns, S. Werth, and H. Hasse

Contact line pinning: Gibbs inequality

Phenomenologically, the range of contact angles that are mechanically stable in the epitaxial Cassie state is given by the Gibbs inequality

$$\theta^{\rm pl} \leq \theta \leq 180^\circ - \delta + \theta^{\rm pl}$$

(with $\theta \leq 180^{\circ}$).

At constant pedestal radius,

- droplet radius R increases with θ ,
- *R* becomes infinite for $\theta \rightarrow 180^{\circ}$.

To check the Gibbs inequality, the simulation setup has to be altered.

Contact line pinning: Gibbs inequality

Case with $\theta^{max} = 180^{\circ}$

Present simulation results are in agreement with the Gibbs inequality.

Contact line pinning: Gibbs inequality

Present simulation results are in agreement with the Gibbs inequality.

10th September 2014

Conclusion

- Molecular models for quadrupolar fluids **predict the surface tension** with an average relative deviation of about 20 % from experimental data.
- Even simple molecular fluids can exhibit a significant **surface enrichment**, related to the dependence of the surface tension on composition.
- The fluid-solid **contact angle** was determined and correlated for Lennard-Jones systems in dependence of the substrate density and the fluid-solid interaction well depth.
- Contact line pinning at an edge (epitaxial Cassie state) was simulated.

10th September 2014