

Computational molecular engineering by large-scale molecular dynamics simulation

Martin Thomas Horsch

Laboratory of Engineering Thermodynamics, University of Kaiserslautern, Germany

Agra, India, 22nd February 2015 Indo-German Frontiers of Engineering

Computational Molecular Engineering

From Physics (qualitative accuracy)

- Physically realistic modelling of intermolecular interactions
- Separate contributions due to repulsive and dispersive as well as electrostatic interactions

Computational Molecular Engineering

From Physics (qualitative accuracy)

- Physically realistic modelling of intermolecular interactions
- Separate contributions due to repulsive and dispersive as well as electrostatic interactions

To Engineering (quantitative reliability)

- No blind fitting, but parameters of effective pair potentials are adjusted to experimental data
- Physical realism facilitates reliable interpolation and extrapolation

Molecular modelling of fluids

Geometry

Bond lengths and angles

Dispersion and repulsion

Lennard-Jones potential: Size and energy parameters

Molecular modelling of fluids

Geometry

Bond lengths and angles

Dispersion and repulsion

Lennard-Jones potential: Size and energy parameters

Electrostatics

Point polarities (charge, dipole, quadrupole): Position and magnitude

22nd Feburary 2015

Quantitatively reliable molecular models

ethylene oxide model by Eckl et al. (2008)

22nd Feburary 2015

ECHNISCHE UNIVERSITÄT

Martin Thomas Horsch

Laboratory of Engineering Thermodynamics (LTD)

Prof. Dr.-Ing. H. Hasse

Molecular models: Parameterization

2CLJQ models:

- 2 LJ centres
- Quadrupole

Fit of parameters σ , ε , L, Q to VLE data of 29 fluids by Stoll *et al.*

Deviation:

 $\delta \rho' \approx 1\%$ $\delta P^{sat} \approx 5\%$

simulation
DIPPR correlation

No interfacial properties were considered for the parameterization.

Molecular models: Prediction and validation

Molecular models: Multicriteria optimization

Multicriteria optimization requires massively-parallel molecular modelling.

Separation of length scales for simulation

For planar interfaces:

Long-range correction from the density profile, following Janeček.

Angle-averaging expression for multi-site models, following **Lustig**.

Full evaluation of all pairwise interactions is too expensive instead, **short-range interactions** are evaluated for **neighbours**.

22nd Feburary 2015

Separation of length scales for simulation

For planar interfaces:

Long-range correction from the density profile, following **Janeček**.

Angle-averaging expression for multi-site models, following **Lustig**.

Two-centre LJ fluid (2CLJ)

For arbitrary geometries, e.g. the fast multipole method can be employed.

Scalable data structures for large systems

Linked-cell data structure suitable for spatial domain decomposition:

Methods for heterogeneous or fluctuating particle distributions:

Large systems in molecular dynamics

Download Is1 mardyn on the www.ls1-mardyn.de website.

22nd Feburary 2015

Scaling on hermit at HLRS, Stuttgart

Scaling on SuperMUC at LRZ, Garching

Up to $N = 4 \cdot 10^{12}$ molecules on SuperMUC

Non-equilibrium molecular dynamics

Non-equilibrium molecular dynamics

Non-equilibrium MD (NEMD): Process is simulated in a steady state.

Requires the intervention of a regulatory mechanism (dæmon)

Example: Grand canonical MD simulation with McDonald's dæmon

Challenge: Realistic fluid-solid contact

- Adsorption and wetting
- Contact angle and line pinning
- Lubrication and heat transfer
- Modelling of cutting liquids
- Tribological effects

Challenge: Realistic fluid-solid contact

Wetting and contact line pinning

Computational Molecular Engineering

Quantitatively reliable molecular modeling