

Empirical rules of thumb or molecular modelling?

Martin Horsch, Maximilian Kohns, Erik von Harbou, and Hans Hasse

Lehrstuhl für Thermodynamik Technische Universität Kaiserslautern

Kaiserslautern, 29th June 2015 *VII. Boltzmann-Zuse Annual Meeting*

Case study: Analogy between CO₂ and N₂O

Engineering application scenario:

- Gas cleaning by reactive absorption
- Physical gas solubility of CO₂
 - Key property
 - Sometimes impossible to determine

$$\begin{array}{c|c} CO_2 & H_2O & MEA \\ \hline & & & \\ CO_2 & H_2O & MEA \\ \hline & & & \\ CO_2 & H_2O & MEA \\ \hline & & & \\ CO_2 & + OH^- & \longrightarrow HCO_3^- \\ \hline & & & \\ HCO_3^- & \longrightarrow H^+ + CO_3^{2-} \\ \hline & & \\ MEA + H^+ & \longrightarrow MEAH^+ \\ \hline & & \\ MEA + HCO_3^- & \longrightarrow MEACOO^- + H_2O \\ \hline & & \\ H_2O & \longrightarrow H^+ + OH^- \\ \end{array}$$

Case study: Analogy between CO₂ and N₂O

Engineering application scenario:

- Gas cleaning by reactive absorption
- Physical gas solubility of CO₂
 - Key property
 - Sometimes impossible to determine

Henry's law: $Py_i \varphi_i = H_i x_i$

Rule of thumb for Henry's law coefficients:

Analogy with nitrous oxide

$$R_{\rm H} = \frac{H_{\rm N_2O,water}}{H_{\rm CO_2,water}} = \frac{H_{\rm N_2O,aqueous\ solution}}{H_{\rm CO_2,aqueous\ solution}} = \text{const}$$

Pure fluid models

Solutes

CO₂ (Vrabec et al.)

CO₂ (Merker *et al.*)

new molecular models

N₂O two-site model

N₂O three-site model

Solvents

Water (TIP4P/2005)

Ethanol (Schnabel et al.)

Do mixed solvents containing water and ethanol behave as predicted by the CO_2-N_2O analogy?

New models for nitrous oxide

Martin Horsch, Maximilian Kohns, Erik von Harbou, and Hans Hasse

Deviation from Lemmon-Span EOS

Martin Horsch, Maximilian Kohns, Erik von Harbou, and Hans Hasse

Physical solubility in pure water

TIP4P/2005 water, prediction 1,100 ≙ *Н*_{і,ТІР4Р/2005} / МРа 900 700 500 Ē 300 100 310 350 390 430 470 270 T / K□ CO₂ two site CO₂ three site N₂O two site N₂O three site Correlation for CO_2^1 Correlation for N_2O^2

Lorentz-Berthelot combining rule:

$$\sigma_{AB} = \frac{\sigma_A + \sigma_B}{2}$$
$$\epsilon_{AB} = \sqrt{\epsilon_A \epsilon_B}$$

- Overestimation of Henry's law constant in all cases
- Adjustment of a binary interaction parameter necessary

Rumpf and Maurer, Ber. Bunsenges. Phys Chem. 97 (1993) 85.
Penttilä *et al.*, Fluid Phase Equilib. 311 (2011) 59.

29th June 2015

Physical solubility in pure water

 Modified Lorentz-Berthelot combining rule:

$$\sigma_{AB} = \frac{\sigma_A + \sigma_B}{2}$$
$$\epsilon_{AB} = \xi_{AB} \sqrt{\epsilon_A \epsilon_B}$$

- Temperature dependence is well captured by all models
- Best agreement for two-site model of N₂O and three-site model of CO₂

Rumpf and Maurer, Ber. Bunsenges. Phys Chem. 97 (1993) 85.
Penttilä *et al.*, Fluid Phase Equilib. 311 (2011) 59.

29th June 2015

Solubility in pure ethanol

Predictive simulations, i.e. $\xi = 1$ in all cases

1) Postigo and Katz, J. Solution. Chem. 16 (1987) 1015; 2) Dalmolin et al., Fluid Phase Equilib. 245 (2006) 193;

3) Kunerth, Phys. Rev. 19 (1922) 512; 4) Sada et al., Ind. Eng. Chem. Fundam. 14 (1975) 232;

5) Hsu and Campbell, Aerosol Age. 9 (1964) 34.

29th June 2015

Martin Horsch, Maximilian Kohns, Erik von Harbou, and Hans Hasse

Mixed solvent: Water + ethanol

validated for pure EtOH (both), mixture (CO₂)

Mixed solvent: Water + ethanol

- \sim validated for pure EtOH (both) mixture (CO
- validated for pure EtOH (both), mixture (CO₂)
- predictive use: breakdown of the "analogy"

Summary

New two-site and three-site (+ quadrupole) models for nitrous oxide Typical procedure during validation: Select the best model combination Using validated molecular models, reliable predictions can be obtained The "analogy" between CO_2 and N_2O breaks down in a simple test case

Outlook

Application to other aqueous mixtures as technically relevant solvents Crucial: Further development of *ms2idf* (and *ls1idf* for absorption kinetics)