

Homogeneous nucleation of carbon dioxide by molecular simulation

Martin Horsch, Kai Langenbach, Katrin Stöbener, Stephan Werth, Zengyong Lin, Thorsten Windmann, Jadran Vrabec, Hans Hasse

Laboratory of Engineering Thermodynamics, University of Kaiserslautern Thermodynamics and Energy Technology, University of Paderborn

XIX. Symposium on Thermophysical Properties

Boulder, Colorado, 25th June 2015

Molecular modelling of carbon dioxide

Multicriteria optimization requires characterizing a whole class of models.

Laboratory of Engineering Thermodynamics (LTD) Prof. Dr.-Ing. H. Hasse

Molecular modelling of carbon dioxide

Multicriteria optimization requires massively-parallel molecular modelling.

Laboratory of Engineering Thermodynamics (LTD) Prof. Dr.-Ing. H. Hasse

Massively-parallel MD on hermit (Stuttgart)

http://www.ls1-mardyn.de/ 10 large systems "1": molecular dynamics

 CO_{2} (*T* = 280 K and ρ = 17.2 mol/l) (100 000 000 interaction sites, 110 592 cores)

4

Laboratory of Engineering Thermodynamics (LTD) Prof. Dr.-Ing. H. Hasse

5

Massively-parallel MD: Cavitation

Scale-up to the entire *hermit* cluster for canonical simulation of cavitation in carbon dioxide.

Evaluation of local density at 180 x 180 x 180 grid points:

Liquid phase detected for more than 5 neighbours within a radius of 6.9 Å around the grid point.

Cavitation in a subsaturated liquid

Yasuoka-Matsumoto method: Count nuclei exceeding a threshold size ℓ .

Three consecutive regimes:

- relaxation (equilibration)
- homogeneous cavitation
- growth and aggregation

7

Cavitation in a subsaturated liquid

Yasuoka-Matsumoto method: Count nuclei exceeding a threshold size ℓ .

Classical nucleation theory predicts critical cavity sizes from 10 to 30 nm³.

25th June 2015 M. Horsch, K. Langenbach, K. Stöbener, S. Werth, Z. Lin, T. Windmann, J. Vrabec, and H. Hasse

Cavitation rates from simulation and CNT

Cavities with a volume greater than 250 nm³ are certainly supercritical.

For cavitation at high temperatures, CNT is a good approximation.

25th June 2015 M. Horsch, K. Langenbach, K. Stöbener, S. Werth, Z. Lin, T. Windmann, J. Vrabec, and H. Hasse

Nucleation in supersaturated vapours

Nucleation in supersaturated vapours

The carrier gas effect on nucleation

Scenario:

- Vapour contains *k* components
- Liquid phase approximately pure
- k 1 components: Carrier gas

Carrier gas effect (Wedekind et al.):

- Thermalization \rightarrow *J* increases
- Greater pressure \rightarrow J decreases

$$\mathcal{W}(Y_0) = \frac{b_{\text{PE}}^2(Y_0) \left[b_{\text{PE}}^2(Y_0 = 1) + q_{\text{PE}}^2(Y_0 = 1) \right]}{\left[b_{\text{PE}}^2(Y_0) + q_{\text{PE}}^2(Y_0) \right] b_{\text{PE}}^2(Y_0 = 1)} \exp\left(\frac{\Delta G_{\text{PE}}^{\star}(Y_0 = 1) - \Delta G_{\text{PE}}^{\star}(Y_0)}{kT}\right)$$

The air pressure effect on nucleation

The air pressure effect on nucleation

Is a carrier gas only present in the vapour?

Light boiling compounds (i.e. "carrier gases") often adsorb at the interface:

For very small droplets, a bulk-like region (with little air) is absent.

The interfacial region contains great amounts of air due to *inter-facial enrichment*.

Droplet growth and decay is dominated by heat and mass transfer through the interface.

Interfacial enrichment probably influences nucleation in fluid mixtures.

25th June 2015 M. Horsch, K. Langenbach, K. Stöbener, S. Werth, Z. Lin, T. Windmann, J. Vrabec, and H. Hasse 14

Adsorption and surface tension

Gibbs adsorption equation: $d\gamma = -\Sigma \Gamma_i d\mu_i - \zeta dT$.

Even small liquid mole fractions of a carrier gas can reduce γ significantly.

Conclusion

With optimized and validated **molecular models**, e.g. from multicriteria optimization, quantitatively reliable predictions can be made.

Massively parallel MD simulation of large systems makes activated processes like homogeneous nucleation directly accessible. In this way, **over 100 000 cores** of a supercomputer can be used efficiently.

For **pure carbon dioxide**, homogeneous nucleation of bubbles in a metastable liquid and of droplets in a metastable vapour is well described by CNT, without the need for a curvature correction.

The influence of a carrier gas cannot be reduced to its presence in the vapour phase, due to the possibility of **interfacial enrichment**.