

Quantitatively reliable massively-parallel molecular modelling and simulation of vapour-liquid interfaces

M. Horsch,¹ K. Stöbener,^{1, 2} S. Werth,¹ P. Klein,² K.-H. Küfer,² H. Hasse¹

¹Laboratory of Engineering Thermodynamics, University of Kaiserslautern ²Fraunhofer Institute for Industrial Mathematics, Kaiserslautern

Kanpur, 30th December 2015 **IITK Chemical Engineering Seminar** Computational Molecular Engineering

Computational molecular engineering

From Physics (qualitative accuracy)

- Physically realistic modelling of intermolecular interactions
- Separate contributions due to repulsive and dispersive as well as electrostatic interactions

To Engineering (quantitative reliability)

- No blind fitting, but parameters of *effective pair potentials* are adjusted to experimental data
- Physical realism facilitates reliable interpolation and extrapolation

3

Force-field models of low-molecular fluids

Geometry

Bond lengths and angles

Dispersion and repulsion

Lennard-Jones potential: Size and energy parameters

Electrostatics

Point polarities (charge, dipole, quadrupole): Position and magnitude

Vapour-liquid equilibria

vapour pressure, saturated densities, composition, enthalpy of vaporization, etc., by Grand Equilibrium simulation

Interfacial properties

heterogeneous systems with finite-size effects and long-range interactions

Vapour-liquid equilibria: Grand equilibrium

30th December 2015

Vapour-liquid equilibria: Grand equilibrium

<u>Given:</u> Temperature *T*, liquid composition *x*

<u>First step:</u> *NpT* simulation of the liquid phase

An estimate, which may deviate from $p^{sat}(T)$, is used for p in this simulation. The chemical potential and its first and second derivatives with respect to pressure are determined.

<u>Second step:</u> Pseudo- μVT vapour simulation

Grand-canonical simulation where the value of μ is determined on the fly from the pressure.

<u>Obtained:</u> Pressure *p*, vapour composition *y*

7

Laboratory of Engineering

Thermodynamics (LTD) Prof. Dr.-Ing. H. Hasse

Thermodynamic properties of bulk fluids

ms2 is freely available for academic use: register at www.ms-2.de

Vapour-liquid equilibira: Saturated densities and vapour pressures

30th December 2015

Vapour-liquid interfaces

vapour pressure, saturated densities, composition, enthalpy of vaporization, etc., by Grand Equilibrium simulation

Interfacial properties

heterogeneous systems with finite-size effects and long-range interactions

30th December 2015

Molecular dynamics of fluids at interfaces

Interfacial properties

heterogeneous systems with finite-size effects and long-range interactions

11

Molecular dynamics of large systems

Parallelization by volume decomposition

Linked-cell data structure suitable for spatial domain decomposition:

(non-blocking, over-

large systems "1": molecular dynamics

http://www.ls1-mardyn.de/

Hyperthreading and vectorization

Memory-efficient implementation based on the linked-cell data structure:

Optionally, forces acting on molecules are only stored until their cell leaves the sliding window.

hyperthreaded sliding window

Efficient vectorization:

- Optimization by hand, using advanced vector extensions (AVX).
- Conversion from array of structures (AoS) to structure of arrays (SoA).

large systems "1": molecular dynamics

http://www.ls1-mardyn.de/

World record with Is1 mardyn on SuperMUC

large systems "1": molecular dynamics

http://www.ls1-mardyn.de/

30th December 2015

MD simulation of homogeneous cavitation

liquid CO_2 at 220 K and 22.6 mol/l

 13×10^6 molecules (52 x 10^6 sites)

Scale-up to the entire *hermit* cluster for canonical simulation of cavitation in carbon dioxide.

Evaluation of local density at 180 x 180 x 180 grid points:

Liquid phase detected for more than 5 neighbours within a radius of 6.9 Å around the grid point.

30th December 2015

MD simulation of homogeneous cavitation

liquid CO_2 at 220 K and 23.9 mol/l

Three consecutive regimes:

- relaxation (equilibration)
- homogeneous cavitation
- growth beyond critical size

These and other simulations of interfacial phenomena crucially depend on an accurate surface tension.

13×10^6 molecules (52 x 10^6 sites)

Long-range correction at planar interfaces

Full evaluation of all pairwise interactions is too expensive ... **short-range interactions** are evaluated only for **neighbours**.

Long-range correction at planar interfaces

For planar interfaces:

Long-range correction from the density profile, following Janeček.

Angle-averaging expression for multi-site models, following **Lustig**.

Two-centre LJ fluid (2CLJ)

Dipole and dispersion lead to analogous long-range correction expressions. The long-range contribution of the quadrupole can be neglected.

Vapour-liquid interfaces: Finite-size effects

The density at the centre of a liquid nanofilm deviates from that of the saturated bulk liquid at the same temperature (scaling ~ $1/d^3$).

Vapour-liquid interfaces: Finite-size effects

The deviation of the surface tension of a nanofilm from the macroscopic value exhibits the same tendency (scaling with $1/d^3$).

Surface tension at high precision

Validation of molecular force field models

2CLJQ models:

- 2 LJ centres
- 1 quadrupole

Fit of parameters σ, ε,
L, Q to VLE data of
29 fluids by Stoll *et al.*

Deviation:

· δρ' ≈ 1 % · δP^{sat} ≈ 5 %

simulation
 DIPPR correlation

No interfacial properties were considered for the parameterization.

22

Validation of molecular force field models

2CLJD models:

- 2 LJ centres
- 1 dipole

Fit of parameters σ , ε , *L*, μ to VLE data of 46 fluids by Stoll *et al.*

Deviation:

· δρ' ≈ 1 % · δP^{sat} ≈ 5 %

24

Massively parallel molecular modelling

Model parameters:

- LJ size parameter σ
- LJ energy parameter ε
- Elongation L
- Quadrupole moment Q

• Systematic exploration of the four-dimensional model parameter space

Massively parallel molecular modelling

• Systematic exploration of the four-dimensional model parameter space

Correlation of the surface tension by a critical scaling expression

Validation of molecular force field models

30th December 2015

26

Model optimization with multiple objectives

Laboratory of Engineering

27

Thermodynamics (LTD)

Prof. Dr.-Ing. H. Hasse

Multicriteria optimization

Pareto optimality criterion

Multiple objectives

Multicriteria optimization requires massively parallel molecular modelling.

30th December 2015

Multicriteria optimization

Literature example: LDPE synthesis

Ind. Eng. Chem. Res., Vol. 45, No. 9, 2006 3191

Multiple objectives

High-dimensional parameter spaces require stochastic exploration methods.

30th December 2015

30

Parameter space and objective space

p model parameters

(here, p = 4)

- LJ size parameter σ
- LJ energy parameter ε
- Model elongation L
- Multipole moment μ or Q

Dimension of Pareto set $d \le p$.

q optimization criteria

(here, q = 3)

- Saturated liquid density ρ'
- Saturated vapour pressure p^s
- Vapour-liquid surface tension γ

Dimension of the Pareto set cannot be greater than q - 1.

In general, $d = \min(p, q - 1)$.

(here, d = 2)

Computation of the Pareto set

Multicriteria optimization problem

Simultaneously minimized objective functions f_{ξ} with $\xi \in \{\rho', \rho^s, \gamma\}$ given by

$$f_{\xi} = \langle \delta \xi^{2} \rangle_{0.55T_{c}^{exp} < T < 0.95T_{c}^{exp}} = \lim_{N \to \infty} \frac{1}{N+1} \sum_{i=0}^{N} \left(1 - \frac{\xi^{sim}(T)}{\xi^{exp}(T)} \right)_{T/T_{c} = 0.55+0.4i/N}^{2}$$
(here: $N = 9$).

Sandwiching

Alternating construction of inner (reachable) and outer (unreachable) approximations, assuming *local convexity* of the Pareto set.

Hyperboxing

In non-convex regions ("hyperboxes"), Pascoletti-Serafini scalarization is employed to obtain a suitable local single-criterion optimization problem.

Invariants of Pareto-optimal models

For obtaining a rough approximation of the Pareto set, the dimension of the parameter space can be reduced from four to three (or even two).

Model tailoring by the end user

Representation of objective and parameter spaces by **patch plots**:

Pareto-optimal 2CLJQ models of molecular oxygen

Model tailoring by the end user

For each specific application, accuracy requirements can be specified:

Restrictions imposed on 2CLJ models of molecular oxygen

Model tailoring by the end user

Intersection of the highlighted areas within all replicas of the patch plot:

2CLJ models of molecular oxygen fulfilling all requirements

Overall compromise models: Pareto knee

A single-criterion optimization algorithm would often miss the Pareto knee.

30th December 2015

Comparision between model classes

Carbon dioxide: Mie–*n*,6 potential $u(r) = \frac{n}{n-6} \left(\frac{n}{6}\right)^{\frac{6}{n-6}} \epsilon \left| \left(\frac{\sigma}{r}\right)^n - \left(\frac{\sigma}{r}\right)^6 \right|$

30th December 2015

38

Comparision between model classes

Carbon dioxide: Mie-*n*,6 potential ./. other model classes

Summary

The traditional art of molecular modelling

An expert modelling artist designs and publishes

- a single optimized model for a particular fluid,
- according to his choice of criteria (often unknown to the public),
- users are passive, they have to live with the artists' decision.

40

Summary

The traditional art of molecular modelling

An expert modelling artist designs and publishes

- a single optimized model for a particular fluid,
- according to his choice of criteria (often unknown to the public),
- users are passive, they have to live with the artists' decision.

Scientific modelling by multicriteria optimization

For established model classes and multiple thermodynamic criteria,

- the dependence of thermodynamic properties on the model parameters is determined and correlated,
- the deviation between model properties and real fluid behaviour is characterized, and the Pareto set is published,
- users can design their own tailored model with minimal effort.