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Homogeneous systems in equilibrium: ms2
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Vapour-liquid equilibira: Saturated densities and vapour pressures
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Homogeneous systems in equilibrium: ms2
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ms2 is freely available for academic use – register at http://www.ms-2.de/

Vapour-liquid equilibira: Saturated densities and vapour pressures
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Parallel sampling of configurations

518th June 2015
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Geometry

Bond lengths and angles

Electrostatics

Point polarities 
(charge, dipole, quadrupole):
Position and magnitude

Dispersion and repulsion

Lennard-Jones potential:
Size and energy parameters

Force fields for low-molecular fluids
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Parameterization of molecular models
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No interfacial
properties were
considered for the
parameterization.

Fit of parameters σ, ε, 
L, Q to VLE data of 
29 fluids by Stoll et al.

Deviation:
• δρ' ≈ 1 %
• δP sat ≈ 5 %

2CLJQ models:
• 2 LJ centres
• Quadrupole
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Model validation and predictive simulations

818th June 2015

2CLJQ models:
• 2 LJ centres
• Quadrupole

Fit of parameters σ, ε, 
L, Q to VLE data of 
29 fluids by Stoll et al.

Deviation:
• δγ ≈ 10 – 20 %
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Model tailoring by multicriteria optimization
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Multicriteria optimization requires massively-parallel molecular modelling.

Pareto set for carbon dioxidePareto optimality criterion

Martin Horsch, Maximilian Kohns, Kai Langenbach, Stephan Werth, and Hans Hasse
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Quantitative reliability of molecular models
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uncertainty
of reference

molecular

model

ethylene oxide model by Eckl et al. (2008)
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Case study: Analogy between CO
2
 and N

2
O

1118th June 2015

 Gas cleaning by reactive absorption

 Physical gas solubility of CO2

 Key property
 Sometimes impossible to determine

Engineering application scenario:

Martin Horsch, Maximilian Kohns, Kai Langenbach, Stephan Werth, and Hans Hasse
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Case study: Analogy between CO
2
 and N

2
O

 Gas cleaning by reactive absorption

 Physical gas solubility of CO2

 Key property
 Sometimes impossible to determine

Engineering application scenario:

 Analogy with nitrous oxide

 Assumption:

Rule of thumb for Henry's law coefficients:

2 2

2 2

N O,water N O,aqueous solution
H

CO ,water CO ,aqueous solution

const.
H H

R
H H

  

Henry's law: Py
i
 = H

i 
x

i
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Force field for the pure fluids
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Solvents

CO2 (Vrabec et al.)

CO2 (Merker et al.)

N2O two-site model

N2O three-site model

+ +-

- +
+new molecular models

Solutes

Water (TIP4P/2005)

Ethanol (Schnabel et al.)

Do mixed solvents containing water 
and ethanol behave as predicted 
by the CO

2
-N

2
O analogy?

Martin Horsch, Maximilian Kohns, Kai Langenbach, Stephan Werth, and Hans Hasse
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Physical solubility in pure water
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1) Rumpf and Maurer, Ber. Bunsenges. Phys Chem. 97 (1993) 85.
2) Penttilä et al., Fluid Phase Equilib. 311 (2011) 59.

 Lorentz-Berthelot combining rule:

 Overestimation of Henry’s law 
constant in all cases

 Adjustment of a binary interaction 
parameter necessary

TIP4P/2005 water, prediction

σAB=
σA+σB

2
ϵAB=√ϵAϵB

Martin Horsch, Maximilian Kohns, Kai Langenbach, Stephan Werth, and Hans Hasse
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Physical solubility in pure water
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σAB=
σA+σB

2
ϵAB=ξAB √ϵAϵB

 Modified Lorentz-Berthelot 
combining rule:

 Temperature dependence is well 
captured by all models

 Best agreement for two-site model 
of N

2
O and three-site model of CO

2
 

TIP4P/2005 water

adjusted 
points

1) Rumpf and Maurer, Ber. Bunsenges. Phys Chem. 97 (1993) 85.
2) Penttilä et al., Fluid Phase Equilib. 311 (2011) 59.
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Solubility in pure ethanol

1618th June 2015

Predictive simulations, i.e.      = 1 in all cases

1) Postigo and Katz, J. Solution. Chem. 16 (1987) 1015; 2) Dalmolin et al., Fluid Phase Equilib. 245 (2006) 193; 3) Kunerth, Phys. 
Rev. 19 (1922) 512; 4) Sada et al., Ind. Eng. Chem. Fundam. 14 (1975) 232; 5) Hsu and Campbell, Aerosol Age 9 (1964) 34.

ab
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Physical solubility in the mixed solvent
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H const.R 

 “analogy”

● models adjusted to solubility in pure water

● validated for pure EtOH (both), mixture (CO
2
)

● predictive use: breakdown of the “analogy”

Martin Horsch, Maximilian Kohns, Kai Langenbach, Stephan Werth, and Hans Hasse
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Efficient simulation of fluids at interfaces

1818th June 2015

Long-range correction from the 
density profile, following Janeček.

For planar interfaces:

Full evaluation of all pairwise interactions is too expensive ...                        
... instead, short-range interactions are evaluated for neighbours.

short range
(explicit)

long range
(correction)

cutoff radius

Martin Horsch, Maximilian Kohns, Kai Langenbach, Stephan Werth, and Hans Hasse
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Efficient simulation of fluids at interfaces
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Long-range correction from the 
density profile, following Janeček.

For arbitrary geometries, e.g. the fast multipole method can be employed.

Two-centre LJ fluid (2CLJ)

Janeček-Lustig term

no angle averaging

no correction at allAngle-averaging expression for 
multi-site models, following Lustig.

For planar interfaces:

1 nm

cutoff radius / σ
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Efficient simulation of large systems
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Methods for heterogeneous
or fluctuating particle
distributions:

Linked-cell data structure
suitable for spatial domain
decomposition:

(non-blocking, over-
 lapping MPI send/
 receive operations)

large systems “1”: molecular dynamics http://www.ls1-mardyn.de/

Martin Horsch, Maximilian Kohns, Kai Langenbach, Stephan Werth, and Hans Hasse
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Efficient simulation of large systems

2118th June 2015

large systems “1”: molecular dynamics http://www.ls1-mardyn.de/

Optionally, forces 
acting on molecules 
are only stored until 
their cell leaves the 
sliding window.

sliding window

Memory-efficient implementation based on the linked-cell data structure:

Martin Horsch, Maximilian Kohns, Kai Langenbach, Stephan Werth, and Hans Hasse
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Efficient simulation of large systems

2218th June 2015

large systems “1”: molecular dynamics http://www.ls1-mardyn.de/

Optionally, forces 
acting on molecules 
are only stored until 
their cell leaves the 
sliding window.

hyperthreaded sliding window

Memory-efficient implementation based on the linked-cell data structure:

Efficient vectorization:
● Optimization by hand, using advanced vector extensions (AVX).
● Conversion from array of structures (AoS) to structure of arrays (SoA).
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Large-scale MD simulation on SuperMUC
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large systems “1”: molecular dynamics http://www.ls1-mardyn.de/

Up to N = 4 · 1012 molecules on SuperMUC

number of cores

sp
ee

d
up

2013

weak scaling
with 31.5 million

molecules per core
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Large-scale MD simulation on hermit
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homogeneous cavitation

CO
2
 (T = 280 K and ρ = 17.2 mol/l), 3CLJQ

25 million molecules on 110 592 cores

Martin Horsch, Maximilian Kohns, Kai Langenbach, Stephan Werth, and Hans Hasse
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MD simulation of cavitation processes
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Yasuoka-Matsumoto method: Count nuclei exceeding a threshold size ℓ.

Classical nucleation theory predicts critical cavity sizes from 5 to 100 nm3.

CNT
ℓ ≥ 250 nm 3

ℓ =
 1

8 
nm

3

ℓ =
 36 nm

3

ℓ =
 270 nm

3

Martin Horsch, Maximilian Kohns, Kai Langenbach, Stephan Werth, and Hans Hasse
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Dichte / Sättigungsdichte
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MD simulation of nucleation in vapours
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supersaturation (in terms of density)
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Classical nucleation
theory (CNT)

ℓ = 50 molecules
ℓ = 75 molecules
ℓ = 300 molecules
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The air pressure effect on CO
2
 nucleation
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Scenario:

● Vapour contains k components

● Liquid phase is approximately pure

● Other k – 1 components: Carrier gas

Carrier gas effect (Wedekind et al.):

●  Thermalization → J increases

●  Greater pressure → J decreases

CNT following Wedekind et al.

ℓ = 50          ℓ = 100          ℓ = 150
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Fluid mixtures: Interfacial thermodynamics
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„take some point […] and imagine a geometrical surface 
to pass through this point and all other points which are 
similarly situated […] called the dividing surface“.

Thermodynamic excess quantities are ascribed to the interface

XSystem = X I + X II + X E,

e.g. surface free energy or adsorption.

Beside absolute excesses, there are differen-
tial quantities, such as the surface tension

Γ
CO2

 = 0

Γ
O2

γ=( ∂F
∂ A )

N ,V ,T

.
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Case study: Adsorption at fluid interfaces
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Toluene CO
2

7CLJD+5Q
(Huang et al.)

3CLJQ
(Merker et al.)

vapour-liquid equilibrium

unlike interaction by
modified Lorentz-

Berthelot rule

σAB=
σA+σB

2
ϵAB=ξAB √ϵAϵB

with ε
AB

 = 0.95

adjusted to Henry's law coefficients

Martin Horsch, Maximilian Kohns, Kai Langenbach, Stephan Werth, and Hans Hasse
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Case study: Adsorption at fluid interfaces

3018th June 2015

Toluene CO
2

+
adsorptiondensity profile
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Case study: Adsorption at fluid interfaces

3118th June 2015

Toluene CO
2

+
surface tension adsorption

Martin Horsch, Maximilian Kohns, Kai Langenbach, Stephan Werth, and Hans Hasse
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Conclusion

3218th June 2015

By massively-parallel molecular modelling, the thermodynamic behaviour 
of model classes (e.g. 2CLJD, 2CLJQ) can be characterized and used to 
tune molecular models to an application by multicriteria optimization.

Validated molecular models enable reliable predictions for thermo-
dynamic properties by which empirical rules of thumb become obsolete.

By massively-parallel molecular simulation, complex activated processes 
like cavitation in metastable liquids and nucleation in supersaturated 
vapours can be investigated at molecular resolution.

Adsorption of light-boiling components at vapour-liquid interfaces of 
fluid mixtures can be determined and related to the surface tension.

Martin Horsch, Maximilian Kohns, Kai Langenbach, Stephan Werth, and Hans Hasse


