

Skalierbare HPC-Software für molekulare Simulationen in der chemischen Industrie

M. T. Horsch,¹ K. Langenbach,¹ S. Werth,¹ C. W. Glass,² P. Klein,³ N. Tchipev,⁴ P. Neumann,^{4, 5} J. Vrabec⁶ und H. Hasse¹

¹TU Kaiserslautern, ²HLRS, Stuttgart, ³Fraunhofer ITWM, Kaiserslautern, ⁴TU München, Garching, ⁵Universität Hamburg, ⁶Universität Paderborn

VI. HPC-Statuskonferenz der Gauß-Allianz SkaSim DESY, Hamburg, 29. November 2016 Md

Computational Molecular Engineering

Computational Molecular Engineering

Naturwissenschaften (qualitative Korrektheit)

- Physikalisch realistische Modelle intermolekularer Wechselwirkungen
- Beiträge kurzreichweitiger Repulsion und Dispersion sowie langreichweitiger Elektrostatik

Ingenieurwissenschaften (quantitative Zuverlässigkeit)

- Qualitativ korrekte Modelle mit freien Parametern, die quantitativ an Stoffdaten angepasst werden können
- Zuverlässige Inter- und Extrapolation aufgrund realistischer Modelle

Molekulare Modellierung

Geometrie

Bindungslängen und -winkel

Dispersion und Repulsion

Lennard-Jones-Potential: Längen- und Energieparameter

Elektrostatik

Punktpolaritäten (Ladung, Dipol, Quadrupol): Position, Stärke, ggf. Richtung

Stoffdaten aus der molekularen Simulation

Für akademische Nutzer ist ms2 unter www.ms-2.de frei verfügbar.

Phasengleichgewicht: Dichte, Zusammensetzung und Dampfdruck (Grand-Equilibrium-Methode)

S. Deublein et al., Comp. Phys. Comm. 182 (2011) 2350

C. Glass et al., Comp. Phys. Comm. 185 (2014) 3302

29. November 2016 M. Horsch, K. Langenbach, S. Werth, C. Glass, P. Klein, N. Tchipev, P. Neumann, J. Vrabec, H. Hasse 4

Simulation von Phasengleichgewichten

Simulation von Phasengleichgewichten

Dichte und Zusammensetzung auf Tauund Siedelinie, Dampfdruck, Verdampfungsenthalpie, ... (Grand Equilibrium) **Heterogene Systeme**

Größere Systeme und genauere Berücksichtigung langreichweitiger Beiträge

6

Skalierungsverhalten von Is1 mardyn

Als freie Software verfügbar unter http://www.ls1-mardyn.de/

Skalierungsverhalten von Is1 mardyn

MD-Weltrekord mit Simulation eines homogenen flüssigen Zustandspunkts.

Langreichweitige Korrektur

Korrektur auf Basis des Dichteprofils nach Janeček¹

$$U_i^{\text{LRC}} = 2 \pi \int_0^L dy \rho(y) \int_{r_{\min}(y-y_i)}^\infty r \, dr \, u(r)$$

Winkelmittelung f
ür mehrzentrige Modelle nach Lustig²

Winkelmittelung f
ür Dipole nach Cook und Rowlinson³

¹J. Janeček, *J. Phys. Chem. B* 110 (2006) 6264
²R. Lustig, *Mol. Phys.* 65 (1988) 175
³D. Cook, J. S. Rowlinson, *Proc. Roy. Soc. A.* 219 (1953) 405

Langreichweitige Korrektur: Beispiel CO₂

Der Aufwand für die explizit berechneten paarweisen Wechselwirkungen skaliert kubisch in r_{c} und lässt sich auf diesem Weg maßgeblich reduzieren.

29. November 2016 M. Horsch, K. Langenbach, S. Werth, C. Glass, P. Klein, N. Tchipev, P. Neumann, J. Vrabec, H. Hasse 10

Validierung molekularer Modelle

29. November 2016 M. Horsch, K. Langenbach, S. Werth, C. Glass, P. Klein, N. Tchipev, P. Neumann, J. Vrabec, H. Hasse 11

12 %

Validierung molekularer Modelle

20 %

Unpolar, 1CLJ

Neon (Ne), Argon (Ar) Krypton (Kr), Xenon (Xe) Methan (CH₄)

Dipolar, 2CLJD

Kohlenmonoxid (CO) $R11 (CFCI_3)$ R12 (CF_2CI_2) R13 (CF_3CI) R13B1 (CBrF₃) R22 (CHF_2CI) R23 (CHF₃) R41 (CH₂F) R123 (CHCl₂-CF₃) R124 (CHFCI-CF₃) R125 (CHF₂-CF₃) R134a (CH₂F-CF₃) R141b (CH₃-CFCl₂) R142b (CH₃-CF₂CI) R143a (CH_3 - CF_3) R152a (CH₃-CHF₂) R40 (CH_3CI) R40B1 (CH₃Br) R30B1 (CH₂BrCl) R20 (CHCl₃) R20B3 (CHBr₃) R21 (CHFCl₂) R32 (CH_2F_2) R30 (CH_2CI_2)

Dipolar, 2CLJD (Forts.)

R30B2 (CH_2Br_2) CH₂I₂ R12B2 (CBr₂F₂) R12B1 (CBrCIF₂) R10B1 (CBrCl₃) $R161 (CH_{2}F-CH_{3})$ R150a (CHCl₂-CH₃) R140 (CHCl₂-CH₂Cl) R140a (CCI_3 - CH_3) R130a (CH₂CI-CCl₃) R160B1 (CH₂Br-CH₃) R150B2 (CHBr₂-CH₃) R131b (CH₂F-CCl₃) R123B1 (CHClBr-CF₂) R112a (CCl₃-CF₂Cl) R1141 (CHF= CH_{2}) R1132a ($CF_2 = CH_2$) R1140 (CHCI= CH_2) R1122 (CHCI= CF_2) R1113 (CFCI=CF₂) R1113B1 (CFBr=CF₂)

Quadrupolar, 2CLJQ

Fluor (F_2) Chlor (CI_2) Brom (Br_2) lod (I_2) Stickstoff (N_2) Sauerstoff (O_2) Kohlendioxid (CO_2)

Quadrupolar, 2CLJQ (Forts.)

Kohlenstoffdisulfid (CS₂) Ethan (C_2H_6) Ethylen (C_2H_4) Acetylen (C_2H_2) R116 (C_2F_6) R1114 (C_2F_4) R1110 (C_2CI_4) Propadien (CH₂=C=CH₂) Propin (CH_3 - $C\equiv CH$) Propylen (CH₃-CH=CH₂) R846 (SF₆) R14 (CF₄) R10 (CCl₄) R113 (CFCl₂-CF₂Cl) R114 (CF₂CI-CF₂CI) R115 (CF₃-CF₂CI) R134 (CHF_2 - CHF_2) R150B2 (CH₂Br-CH₂Br) R114B2 (CBrF₂-CBrF₂) R1120 (CHCI=CCI₂)

22 %

Andere United-Atom-Modelle

Isobutan (C_4H_{10}) Cyclohexan (C_6H_{12}) Methanol (CH_3OH) Ethanol (C_2H_5OH) Formaldehyd $(CH_2=O)$ Dimethylether (CH_3-O-CH_3) Aceton (C_3H_6O)

Andere United-Atom-Modelle (Forts.)

Ammoniak (NH₃) Methylamin (NH₂-CH₃) Dimethylamin (CH₃-NH-CH₃) R227ea (CF₃-CHF-CF₃) Schwefeldioxid (SO₂) Ethylenoxid (C_2H_4O) Dimethylsulfid (CH₃-S-CH₃) Blausäure (NCH) Acetonitril (NC₂H₃) Thiophen (SC₄H₄) Nitromethan (NO₂CH₃) Phosgen (COCl₂) Benzol (C_eH_e) Toluol (C_7H_8) Chlorbenzol (C₆H₅Cl) Dichlorbenzol ($C_{e}H_{4}CI_{2}$) Cyclohexanol ($C_6H_{11}OH$) Cyclohexanon ($C_6H_{10}O$) Cyan (C₂N₂) Chlorcyan (CCIN) Ameisensäure (CH₂O₂) Monoethylenglycol ($C_2H_6O_2$) Wasser (H₂O) Hydrazin (N_2H_4) Methylhydrazin (CH₆N₂) Dimethylhydrazin ($C_2H_8N_2$) Fluorbutan (C_4F_{10}) Ethylacetat ($C_4H_8O_2$) Hexamethyldisiloxan (C₆H₁₂OSi₂) Octamethylcyclotetrasiloxan (C₈H₂₄O₄Si₄)

29. November 2016

Modellierung industrierelevanter Gemische

Modellierung industrierelevanter Gemische

29. November 2016 M. Horsch, K. Langenbach, S. Werth, C. Glass, P. Klein, N. Tchipev, P. Neumann, J. Vrabec, H. Hasse 14

Modellierung industrierelevanter Gemische

29. November 2016

M. Horsch, K. Langenbach, S. Werth, C. Glass, P. Klein, N. Tchipev, P. Neumann, J. Vrabec, H. Hasse 15

Kavitation in metastabilen Flüssigkeiten

Homogene Nukleation von Gasblasen in flüssigem CO₂: MD-Simulation auf dem ganzen Cluster *hermit* (HLRS, Stuttgart).

Auswertung der lokalen Dichte:

Gasphase wird detektiert, wenn ≤ 5 Moleküle sich in einem Radius von 6.9 Å um einen der regelmäßig angeordneten Gitterpunkte befinden.

Clusterstatistik in großen Systemen

¹T. Merker, C. Engin, J. Vrabec, H. Hasse, *J. Chem. Phys.* **132** (2010) 234512.

Auswertung nach Yasuoka und Matsumoto²

²K. Yasuoka, M. Matsumoto, *J. Chem. Phys.* **109** (1989) 8463 – 8470.

Mikro- und Nanofluidik

NEMD-Simulation (non-equilibrium molecular dynamics): Stationärer Nichtgleichgewichtszustand, z.B. mit Druckgradient oder Scherung des Fluids, aufrechterhalten durch einen maxwellschen Dämon.

20

Membrandesign

Modelloptimierung mit CoSMoS und GROW

Exploration: <u>Calibration of Simultaneous Modeling of Simulations</u>¹

Lokale Optimierung: <u>Gradient-based</u> Optimization Workflow²

¹A. Krämer, M. Hülsmann, T. Köddermann, D. Reith, *Comp. Phys. Comm.* **185** (2014) 3228. ²M. Hülsmann, T. Köddermann, J. Vrabec, D. Reith, *Comp. Phys. Comm.* **181** (2010) 499.

Multikriterielle Modelloptimierung

Pareto-Optimalitätskriterium

drei Zielfunktionen

Multikriterielle Optimierung setzt massiv-parallele Modellierung voraus.

Multikriterielle Modelloptimierung

Patch plots zur Darstellung des Parameter- und des Zielfunktionsraums:

Pareto-optimale 2CLJQ-Modelle für Sauerstoff

K. Stöbener et al., Fluid Phase Equilib. 411 (2016) 33

Multikriterielle Modelloptimierung

Den Kriterien schlecht genügende Modelle Schritt für Schritt eliminieren:

Nach einigen Eliminierungsschritten beibehaltene 2CLJ-Modelle

