

Molecular dynamics simulation of nanofluidics and nanomachining

M. T. Horsch,^{1, 4} S. Stephan,¹ S. Becker,¹ M. Heier,¹ M. P. Lautenschläger,¹ F. Diewald,² R. Müller,² H. M. Urbassek,³ and H. Hasse¹

¹Engineering Thermodynamics, ²Applied Mechanics, ³Computational Materials Science, University of Kaiserslautern, Germany, ⁴Chemical Engineering, IIT Kanpur, India

HPC & Big Data in Molecular Engineering HiPC 2016, Hyderabad, December 19, 2016 Computational Molecular Engineering

2

NEMD simulation of heat transfer

Dual-control-volume¹ non-equilibrium molecular dynamics simulation:

3

NEMD simulation of momentum transfer

By NEMD simulation, both linear and non-linear effects are accessible.

Hardy stress tensor: J. Vanegas, A. Torres, M. Arroyo, J. Chem. Theory Comput. 10, 691, 2014.

NEMD simulation of momentum transfer

To compute the stress, kinetic and virial contributions are resolved locally.^{1, 2}

¹Hardy stress tensor: J. Vanegas, A. Torres, M. Arroyo, *J. Chem. Theory Comput.* 10, 691, **2014**. ²MD simulation code *Is1 mardyn* available at **http://www.Is1-mardyn.de/**

5

NEMD simulation of diffusive mass transfer

Avendaño's dæmon,¹ based on **virtual colouring** of identical molecules, induces $\nabla \mu$ without the simultaneous presence of a pressure gradient by accelerating differently coloured molecules in opposite directions.

In this way, diffusive mass transfer is separated from momentum transfer. ¹H. Frentrup, C. Avendaño, M. Horsch, A. Salih, E. A. Müller, *Mol. Sim.* 38, 540, **2012**.

6

NEMD simulation of Poiseuille flow

The accelerating force is only applied to the fluid molecules within a specified control volume.

It overcompensates the pressure drop, so that (equivalent) density, pressure, and chemical potential gradients are actually present.

7

NEMD simulation of Poiseuille flow

NEMD simulation of Poiseuille flow

Dec 19, 2016 M. Horsch, S. Stephan, S. Becker, M. Heier, M. Lautenschläger, F. Diewald, R. Müller, H. Urbassek, H. Hasse

Methane at a graphite wall: Presence of slip

M. Horsch, S. Stephan, S. Becker, M. Heier, M. Lautenschläger, F. Diewald, R. Müller, H. Urbassek, H. Hasse

9

Water in a polar membrane: Absence of slip

Quantitative water model: TIP4P/2010 (Huang et al.)

Qualitative P84 polyimide pore model: Graphite with superimposed point charges

Contact angle and fluid-wall interaction

LJTS potential for fluid (f) and wall (w) with $\sigma_{fw} = \sigma_{f}$ und $\varepsilon_{w} = 100 \varepsilon_{f}$.

S. Becker et al., Langmuir 30, 13606, 2014

Correlation of the density profile by

$$\rho(r, y) = f(r) \cdot [h(y) + 1],$$

with the exponential decay term h(y)

and a hyperbolic tangent profile f(r).

Variation of the temperature *T* and the fluid-wall dispersion by $\zeta = \varepsilon_{f_s} / \varepsilon_f$.

Contact angle and fluid-wall interaction

Variation of the reduced fluid-wall dispersion energy ζ , at constant T:

Correlation: $\cos \theta$ proportional to $\zeta - \zeta_0$ for $\zeta_0 = 0.52$ at all temperatures.

Contact angle and fluid-wall interaction

At high temperatures, (pre-)critical wetting occurs:

Correlation:¹ cos θ proportional to $\zeta - \zeta_0$ and to $(1 - T/T_c)^{-2/3} + 1$.

NEMD simulation of Couette shear flow

Scenario: Fluid and wall as LJTS with $\varepsilon_{w} = 100 \varepsilon_{f}$ and $\sigma_{w} = \sigma_{f}$

$$T_{w} = 0.8 \varepsilon_{f}$$
$$\Delta y_{w} = 15 \sigma_{f}$$
$$\Delta v_{w} = 0.5 (\varepsilon_{f} / m_{f})^{1/2}$$

Fluid attracted more strongly to the walls supports greater shear rates without boundary slip. A stronger unlike interaction between the fluid and the wall improves heat transfer from the fluid to the wall.

Nanomachining with a rigid nanoindenter^{1, 2}

Dec 19, 2016 M. Horsch, S. Stephan, S. Becker, M. Heier, M. Lautenschläger, F. Diewald, R. Müller, H. Urbassek, H. Hasse 15

Nanomachining in the presence of a liquid

Nanomachining in the presence of a liquid

Indentation in the presence of a liquid

Fluid and fluid-solid: LJTS Fluid-solid: $\zeta = 0.5$ Iron: Mendelev potential Indenter: Rigid cylinder (with LJTS sites)

Thermostat acting on remote part of the work piece,

 $T_{\rm ext} = 0.8 \varepsilon_{\rm f}$

fluid density $\rho_{\rm f}$ = 0.8 σ^{-3} .

Scratching in the presence of a liquid

The LJTS fluid with ζ = 0.5 does not lubricate the nanomachining process.

Dec 19, 2016 M. Horsch, S. Stephan, S. Becker, M. Heier, M. Lautenschläger, F. Diewald, R. Müller, H. Urbassek, H. Hasse 19

Heat transfer from work piece to liquid

MD simulation of indentation and scratching with different orders of magnitude for the fluid-solid interaction.

temperature profile ($\zeta = 0.5$)

Heat transfer from work piece to liquid

MD simulation of indentation and scratching with different orders of magnitude for the fluid-solid interaction.

temperature profile ($\zeta = 0.5$)

Greater fluid-wall dispersion

- reduces Kapitza (thermal) resistance here, by 10 to 50%, depending on T
- increases friction \rightarrow no lubrication by LJ here, F_{T}/F_{N} increased by 20 to 30%

Morphology as a challenge for data science

Physical and chemical inhomogeneities influence adsorption and wetting.

Nanoscopic Poiseuille flow: Results

Dec 19, 2016 M. Horsch, S. Stephan, S. Becker, M. Heier, M. Lautenschläger, F. Diewald, R. Müller, H. Urbassek, H. Hasse 23

Nano- to microfluidics by scale-bridging MD

Dec 19, 2016 M. Horsch, S. Stephan, S. Becker, M. Heier, M. Lautenschläger, F. Diewald, R. Müller, H. Urbassek, H. Hasse

Scale bridging by mesoscopic approaches

Relaxation simulations based on a square-gradient phase field model:¹

¹F. Diewald, C. Kuhn, R. Blauwhoff, M. Heier, S. Becker, S. Werth, M. Horsch, H. Hasse, and R. Müller, *Proc. Appl. Math. Mech.* 16, 519, **2016**.

Scale bridging by mesoscopic approaches

Relaxation simulations based on a square-gradient phase field model:¹

- Include inertia, external driving forces, non-equilibrium steady states
- Consider fluctuations, e.g. on the basis of fluctuating hydrodynamics

¹F. Diewald, C. Kuhn, R. Blauwhoff, M. Heier, S. Becker, S. Werth, M. Horsch, H. Hasse, and R. Müller, *Proc. Appl. Math. Mech.* 16, 519, **2016**.

Conclusion

The increasing availability of HPC resources enables molecular simulation to capture the transition from nano- to microfluidics at an atomistic level. This is still expensive and does not make mesoscopic methods redundant. Instead, it helps to validate theories and mesoscopic models.

For phenomena involving fluid-solid contact, the challenge to modelling and data science consists in reducing the complexity of the fluid-solid interaction and surface morphology, retaining physically relevant features.

Example: The single-centre LJTS model captures the influence of the fluid-solid dispersion energy on the contact angle, the boundary slip length, and the Kapitza (thermal) resistance; all decrease as ζ increases.

However, **no lubrication** was found: Increased wetting of a model work piece by the LJTS fluid was found to increase the friction coefficient.