

Molekulardynamiksimulation der Nukleation von CO₂

Martin Horsch,¹ Kai Langenbach,^{1, 2} Stephan Werth,¹ Stefan Eckelsbach,³ Jadran Vrabec³ und Hans Hasse¹

¹Lehrstuhl für Thermodynamik, TU Kaiserslautern ²Chemical and Biomolecular Engineering, Rice University ³Thermodynamik und Energietechnik, Universität Paderborn

ProcessNet- und DECHEMA-Jahrestagung Aachen, 15. September 2016

Entstehung nanodisperser Phasen

(aktuelle Arbeit, Visualisierung mit vmd)

Nukleationstheorie

Nukleation ist ein aktivierter Vorgang \rightarrow Nukleationsrate $J \sim \exp(-\Delta A^* / kT)$

Klassische Nukleationstheorie^{1–3} (CNT)

Kapillaritätsapproximation: **Oberflächenspannung nanodisperser Phasen** wird durch den Wert für eine planare Phasengrenze angenähert.

Der **thermodynamische Faktor** $\exp(-\Delta A^* / kT)$ ergibt sich aus dem Maximum der freien Bildungsenergie $\Delta A(V) \rightarrow$ kritisches Volumen V*.

$$\Delta A(V) = aV^{2/3} - gV$$
 für $a = \gamma \sqrt[3]{36\pi}, g = p^{sat}(T) - p$

 $V^* = \left(\frac{2a}{3g}\right)^3 \qquad \Delta A^* = \frac{gV^*}{2}$

¹M. Volmer, A. Weber, *Z. Phys. Chem.* **119** (1926) 277. ²Ya. B. Zel'dovič, *Ж. Эксп. Теор. Физ.* **12** (1942) 525. ³M. Blander, J. L. Katz, *J. Stat. Phys.* **4** (1972) 55.

Nukleationstheorie

Nukleation ist ein aktivierter Vorgang \rightarrow Nukleationsrate $J \sim \exp(-\Delta A^* / kT)$

Klassische Nukleationstheorie (CNT)

Kapillaritätsapproximation: **Oberflächenspannung nanodisperser Phasen** wird durch den Wert für eine planare Phasengrenze angenähert.

Der **thermodynamische Faktor** $\exp(-\Delta A^* / kT)$ ergibt sich aus dem Maximum der freien Bildungsenergie $\Delta A(V) \rightarrow$ kritisches Volumen V*.

Der kinetische Faktor J_{n} ergibt sich aus der kinetischen Gastheorie.

Nukleationsrate
$$J = J_0 \exp\left(-\frac{\Delta A^*}{kT}\right)$$

Molekulare Modellierung von CO

Massiv-parallele MD-Simulation

MD-Weltrekord mit Simulation eines homogenen flüssigen Zustandspunkts.

15. September 2016

MD-Simulation der Gasblasenbildung

$\rm CO_2$ bei 220 K und 22.6 mol/l

Homogene Nukleation in metastabilem flüssigem CO₂: Simulationen auf dem gesamten Cluster *hermit* (HLRS, Stuttgart).

Auswertung der lokalen Dichte:

Gasphase wird detektiert, wenn fünf oder weniger Moleküle sich in einem Radius von 6.9 Å um einen Gitterpunkt befinden.

MD-Simulation der Gasblasenbildung

Auswertung der MD-Simulationen nach Yasuoka and Matsumoto:¹ J als Bildungsrate von Gasblasen, die deutlich überkritisch, aber um Größenordnungen kleiner sind als das Gesamtvolumen. ¹J. Chem. Phys. **109** (1998) 8463.

Simulationsergebnisse und Theorie

MD-Simulationen für CO₂ bei einer niedrigen Temperatur (T = 220 K):

Bei niedrigen Temperaturen unterschätzt die CNT die Nukleationsrate.

15. September 2016

Simulationsergebnisse und Theorie

MD-Simulationen für CO_2 bei einer hohen Temperatur (T = 280 K):

Aus der CNT folgt eine unphysikalische Temperaturabhängigkeit von J.

15. September 2016

DGT + PC-SAFT

[1] L. D. Landau, E. M. Lifshitz, *Phys. Z. Sowjet.* 8 (1935) 153.
 [2] J. W. Cahn, J. E. Hilliard, *J. Chem. Phys.* 28 (1958) 258.
 [3] C. I. Poser, I. C. Sanchez, *Macromol.* 14 (1981) 361.
 [4] M. P. A. Fisher, M. Wortis, *Phys. Rev. B* 29 (1984) 6252.
 [5] H. Kahl, S. Enders, *Phys. Chem. Chem. Phys.* 4 (2002) 931.

Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT)

$$A = A^{\text{ideal}} + A^{\text{harte Kette}} + A^{\text{Dispersion}} + A^{\text{Assoziation}}$$

[6] J. Gross, G. Sadowski, *Ind. Eng. Chem. Res.* 40 (2001) 1244.
[7] J. Gross, G. Sadowski, *Ind. Eng. Chem. Res.* 41 (2002) 5510.

DGT + PC-SAFT + MD: Hybride Theorie

15. September 2016

Tropfenbildung in übersättigten Dämpfen

Lehrstuhl für Thermodynamik Prof. Dr.-Ing. H. Hasse

Simulationsergebnisse und Theorie

Wedekind et al.

Einfluss eines Trägergases: Theorie

Szenario:

- Dampf enthält v Komponenten
- Davon nur ein Schwersieder
- v 1 Komponenten: Trägergas

Trägergaseffekt (Wedekind et al.):

- Thermalisierung $\rightarrow J$ steigt
- Volumenarbeit $\rightarrow J$ sinkt

$$\mathcal{W}(Y_0) = \frac{b_{\text{PE}}^2(Y_0) \left[b_{\text{PE}}^2(Y_0 = 1) + q_{\text{PE}}^2(Y_0 = 1) \right]}{\left[b_{\text{PE}}^2(Y_0) + q_{\text{PE}}^2(Y_0) \right] b_{\text{PE}}^2(Y_0 = 1)} \exp\left(\frac{\Delta G_{\text{PE}}^\star(Y_0 = 1) - \Delta G_{\text{PE}}^\star(Y_0)}{kT}\right)$$

PRL 101, 125703 (2008)

Tropfenbildung im System CO₂ + Luft

Quaternäres System

 CO_2 , N_2 und O_2 (2CLJQ) Ar (LJ)

Trägergaskomponenten mit Zusammensetzung wie die Erdatmosphäre

15. September 2016

Tropfenbildung im System CO₂ + Luft

Quaternäres System

 CO_2 , N₂ und O₂ (2CLJQ) Ar (LJ)

Trägergaskomponenten mit Zusammensetzung wie die Erdatmosphäre

Atmosph. Res. 101 (2011) 519.

Leicht- und Schwersieder an Grenzflächen

Leicht- und Schwersieder an Grenzflächen

15. September 2016

Leicht- und Schwersieder an Grenzflächen

Zusammenfassung

Homogene Nukleation von ...

- Gasblasen in einer metastabilen Flüssigphase: Versagen der CNT nach Blander und Katz, falsch vorhergesagter Temperatureinfluss. Korrektur durch hybride Theorie: DGT + PC-SAFT + MD.
- Tropfen in übersättigtem reinem Dampf: Vergleichsweise gute Übereinstimmung mit der CNT (nach Feder *et al.*).
- Tropfen in übersättigtem quaternärem Gemisch CO2 + Luft: Versagen der CNT (nach Wedekind *et al.*). Mögliche Ursache: Anreicherung überkritischer Komponenten an der Grenzfläche.

M. Horsch, J. Vrabec, M. Bernreuther, S. Grottel, G. Reina, A. Wix, K. Schaber, H. Hasse, J. Chem. Phys. 128 (2008) 164510.
M. Horsch, Z. Lin, T. Windmann, H. Hasse, J. Vrabec, Atmosph. Res. 101 (2011) 519.

- S. Eckelsbach, J. Vrabec, *Phys. Chem. Chem. Phys.* 17 (2015) 27195.
- S. Werth, M. Kohns, K. Langenbach, M. Heilig, M. Horsch, H. Hasse, Fluid Phase Equilib. 427 (2016) 219.
- S. Becker, S. Werth, M. Horsch, K. Langenbach, H. Hasse, Fluid Phase Equilib. 427 (2016) 476.
- 15. September 2016