

Benetzung planarer und strukturierter Oberflächen

Martin Thomas Horsch

Lehrstuhl für Thermodynamik

"Autumn School", SFB 926 Landau, den 27. September 2016

Benetzung: Die Young-Gleichung

(Abbildungen: public domain)

Young-Gleichung ¹
$\cos\theta = \frac{\gamma_{\rm sv} - \gamma_{\rm sl}}{\gamma_{\rm lv}}$

¹T. Young, *Phil. Trans. R. Soc. London* 95 (1805) 65

Computational Molecular Engineering

Naturwissenschaften (qualitative Korrektheit)

- Physikalisch realistische Modelle intermolekularer Wechselwirkungen
- Beiträge kurzreichweitiger Repulsion und Dispersion sowie langreichweitiger Elektrostatik

Ingenieurwissenschaften (quantitative Zuverlässigkeit)

- Qualitativ korrekte Modelle mit freien Parametern, die quantitativ an Stoffdaten angepasst werden können
- Zuverlässige Inter- und Extrapolation aufgrund realistischer Modelle

Molekulare Modellierung

Geometrie

Bindungslängen und -winkel

Dispersion und Repulsion

Lennard-Jones-Potential: Längen- und Energieparameter

Elektrostatik

Punktpolaritäten (Ladung, Dipol, Quadrupol): Position, Stärke, ggf. Richtung

Multikriterielle Modelloptimierung

Pareto-Optimalitätskriterium

Multikriterielle Modelloptimierung

Pareto-Optimalitätskriterium

drei Zielfunktionen

Multikriterielle Optimierung setzt massiv-parallele Modellierung voraus.

Massiv-parallele Molekulardynamik

Als freie Software verfügbar unter http://www.ls1-mardyn.de/

Lehrstuhl für Thermodynamik Prof. Dr.-Ing. H. Hasse

Massiv-parallele Molekulardynamik

MD-Weltrekord mit Simulation eines homogenen flüssigen Zustandspunkts.

Lehrstuhl für Thermodynamik Prof. Dr.-Ing. H. Hasse

Phasenfeldmethode (PFM)

Freie Energiedichte z.B. aus Virialgleichung $\rho = \rho T + B_2 \rho^2 T + B_3 \rho^3 T + \dots$

Alternative Bezeichnungen für die gleiche Methode: Dichtegradiententheorie (DGT), Cahn-Hilliard-Theorie, Square gradient theory (SGT), Gradientenapproximation der Dichtefunktionaltheorie (DFT), ...

Phasenfeld + molekulare Zustandsgleichung

Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT)

$$A = A^{\text{ideal}} + A^{\text{harte Kette}} + A^{\text{Dispersion}} + A^{\text{Assoziation}}$$

[6] J. Gross, G. Sadowski, *Ind. Eng. Chem. Res.* 40 (2001) 1244.
[7] J. Gross, G. Sadowski, *Ind. Eng. Chem. Res.* 41 (2002) 5510.

27. September 2016

Simulation: Tropfen auf planarer Oberfläche

LJTS-Potential für Fluid (f) und Festkörper (s) mit $\sigma_{fs} = \sigma_{f}$ und $\varepsilon_{s} = 100 \varepsilon_{f}$.

Variation der Temperatur *T*, der Festkörperdichte ρ_s über den Parameter σ_s , der Fluid-Festkörper-Dispersionsenergie, d.h. des Parameters $\zeta = \varepsilon_{fs} / \varepsilon_{f}$.

27. September 2016

Simulation: Tropfen auf planarer Oberfläche

LJTS-Potential für Fluid (f) und Festkörper (s) mit $\sigma_{fs} = \sigma_{f}$ und $\varepsilon_{s} = 100 \varepsilon_{f}$.

Korrelation des Dichteprofils:

$$\rho(r, y) = f(r) \cdot [h(y) + 1],$$

exponentiell gedämpfte Oszillation h(y),

tanh-Profil f(r).

S. Becker et al., Langmuir 30 (2014) 13606

Variation der Temperatur *T*, der Festkörperdichte ρ_s über den Parameter σ_s , der Fluid-Festkörper-Dispersionsenergie, d.h. des Parameters $\zeta = \varepsilon_{fs} / \varepsilon_{f}$.

Solvophobe und solvophile Oberflächen

Variation der Fluid-Festkörper-Dispersionsenergie ζ :

Korrelation: $\cos \theta$ proportional zu $\zeta - \zeta_0$ für $\zeta_0 = 0.52$ unabhängig von *T*.

27. September 2016

Kritische Benetzung

Bei hohen Temperaturen tritt (vor-)kritische Benetzung auf:

Korrelation: cos θ proportional zu $\zeta - \zeta_0$ und zu $(1 - T/T_c)^{-2/3} + 1$.

Kritische Benetzung

Bei hohen Temperaturen tritt (vor-)kritische Benetzung auf:

Korrelation: cos θ proportional zu $\zeta - \zeta_0$ und zu $(1 - T/T_c)^{-2/3} + 1$.

27. September 2016

Molekulare Modellierung von Gemischen

27. September 2016

Leicht- und Schwersieder an Grenzflächen

Leicht- und Schwersieder an Grenzflächen

27. September 2016

Leicht- und Schwersieder an Grenzflächen

27. September 2016

Benetzung: Die Young-Gleichung

(Abbildungen: public domain)

Einfluss der Oberflächenmorphologie

"Morphological analysis is simply an ordered way of looking at things."¹ ¹F. Zwicky, *The Observatory* 68 (1948) 121

(Quelle: Optische Technologien und Photonik)

 Hv
 mag
 VD
 5/26/2010

 10.00 kV
 364 x 1.7. mm
 2:58:34 PM

(Quelle: FBK)

Benetzung strukturierter Oberflächen

Charakterisierung der Oberflächenstruktur durch Flächenverhältnisse:^{1, 2}

Die Größen w und φ beschreiben Eigenschaften der Oberfläche im Mittel.

¹R. N. Wenzel, Ind. Eng. Chem. 28 (1936) 988, ²A. Cassie, S. Baxter, Transact. Faraday Soc. 40 (1944) 546

Benetzung strukturierter Oberflächen

27. September 2016

Das Wenzelmodell

Ansatz von Wenzel:¹

 Vergrößerung der Kontaktfläche zwischen Fluid und Festkörper um den Faktor

$$w = \frac{f_1 + f_2 + f_3}{f_1 + f_2}$$

• Ersetze γ_{vs} und γ_{ls} durch $w\gamma_{vs}$ und $w\gamma_{ls}$:

$$\cos \theta = \frac{w(\gamma_{\rm vs} - \gamma_{\rm ls})}{\gamma_{\rm vl}} = w \cos \theta_{\rm 0}$$

¹R. N. Wenzel, *Ind. Eng. Chem.* **28** (1936) 988.

Das Cassiemodell

Lehrstuhl für Thermodynamik Prof. Dr.-Ing. H. Hasse

MD-Simulation planarer Oberflächen

27. September 2016

MD-Simulation strukturierter Oberflächen

Untersuchung des Kontaktwinkels für verschiedene Oberflächenstrukturen:

27. September 2016

Kontaktwinkel im Imprägnierungszustand

Kontaktwinkel im Imprägnierungszustand

Asymmetrische Tropfenkonturen

Bei entsprechender Vorgabe kanonischer Randbedingungen bilden sich dauerhaft wandernde Tropfen mit asymmetrischer Kontur ("Mützen").

Heterogen strukturierte Oberflächen

Ergebnis im Imprägnierungszustand auf der homogen strukturierten Oberfläche: Kontaktwinkel θ = 45° für *B* = 6 σ_{f} und θ = 58° für *B* = 2 σ_{f} .

27. September 2016

Fortbewegung der Kontaktlinie

Kontaktlinienhaftung ist messbar und wird durch die Rauheit und Struktur der Festkörperoberfläche verursacht:

Quelle: F. Schellenberger et al., Phys. Rev. Lett. 116 (2016) 096101

D. Bonn *et al.*, *Rev. Mod. Phys.* 81 (2009) 739

Bei der Fortbewegung der Kontaktlinie ist ggf. eine freie Energiebarriere zu überwinden, dann handelt es sich um einen aktivierten Prozess.

Kontaktlinienhaftung und Überlaufen

Gibbs'sche Ungleichung:

$$\theta_0 \leq \theta \leq \theta_0 + \alpha$$

Der epitaxiale Cassiezustand

Gibbs'sche Ungleichung:

$$\theta_0 \leq \theta \leq \theta_0 + \alpha$$

27. September 2016

Sprung der Kontaktlinie

Simulationsergebnisse stimmen mit der gibbs'schen Ungleichung überein.

Kontaktlinienbewegung durch Nukleation

Kontaktlinienbewegung durch Nukleation

Bevorzugter Mechanismus bei der Fortbewegung der Kontaktlinie:

- 1. Lokale Bewegung in radialer Richtung durch Nukleation einer Brücke zwischen benachbarten imprägnierten Zonen.
- 2. Vollständige oder teilweise Ausbreitung der Brücke in axialer Richtung.

Für eine radialsymmetrische Ausbreitung des Tropfens durch einen Sprung der Kontaktlinie wäre eine höhere freie Energiebarriere zu überwinden.¹

¹P. G. de Gennes, *Rev. Mod. Phys.* **57** (1985) 827.

27. September 2016

Zusammenfassung

Computational Molecular Engineering ist die skalierbare molekulare Simulation mit physikalisch realistischen molekularen Modellen.

Die **Oberflächenspannung** und mit ihr verwandte Phänomene (z.B. Anreicherung an der Phasengrenze) können durch MD-Simulation heterogener Systeme untersucht werden.

Der **Kontaktwinkel** dispersiv wechselwirkender Systeme wurde für planare Oberflächen charakterisiert, der Einfluss der Morphologie wurde untersucht. Die Modelle von Wenzel und Cassie geben diesen nicht korrekt wieder.

Maßgeblich für heterogen strukturierte Oberflächen ist die Morphologie im Bereich der **Kontaktlinie**. Die Haftung der Kontaktlinie erfolgt nach der gibbs'schen Ungleichung, die Fortbewegung durch Nukleation (de Gennes).