

Oberflächenspannung, Benetzung und Kontaktlinienhaftung

Martin Horsch

Lehrstuhl für Thermodynamik Technische Universität Kaiserslautern

Kaiserslautern, 29. Juni 2016

Oberflächenspannung und Benetzung

(Abbildungen: public domain)

Young-Gleichung¹

$$\cos\theta = \frac{\gamma_{sv} - \gamma_{sl}}{\gamma_{lv}}$$

¹T. Young, *Phil. Trans. R. Soc. London* 95 (1805) 65

Computational Molecular Engineering

Naturwissenschaften (qualitative Korrektheit)

- Physikalisch realistische Modelle intermolekularer Wechselwirkungen
- Beiträge kurzreichweitiger Repulsion und Dispersion sowie langreichweitiger Elektrostatik

Ingenieurwissenschaften (quantitative Zuverlässigkeit)

- Qualitativ korrekte Modelle mit freien Parametern, die quantitativ an Stoffdaten angepasst werden können
- Zuverlässige Inter- und Extrapolation aufgrund realistischer Modelle

Molekulare Modellierung

Geometrie

Bindungslängen und -winkel

Dispersion und Repulsion

Lennard-Jones-Potential: Längen- und Energieparameter

Elektrostatik

Punktpolaritäten (Ladung, Dipol, Quadrupol): Position, Stärke, ggf. Richtung

Stoffdaten aus der molekularen Simulation

Dichte und Zusammensetzung auf Tauund Siedelinie, Dampfdruck, Verdampfungsenthalpie, ... (Grand Equilibrium)

Stoffdaten aus der molekularen Simulation

Dichte und Zusammensetzung auf Tauund Siedelinie, Dampfdruck, Verdampfungsenthalpie ... (Grand Equilibrium¹)

¹J. Vrabec, H. Hasse, *Mol. Phys.* 100 (2002) 3375

29. Juni 2016

Stoffdaten aus der molekularen Simulation

Für akademische Nutzer ist *ms2* unter www.ms-2.de frei verfügbar.

Phasengleichgewicht: Dichte, Zusammensetzung und Dampfdruck (Grand-Equilibrium-Methode)

S. Deublein et al., Comp. Phys. Comm. 182 (2011) 2350

C. Glass et al., Comp. Phys. Comm. 185 (2014) 3302

29. Juni 2016

Stoffdaten aus der molekularen Simulation

Dichte und Zusammensetzung auf Tauund Siedelinie, Dampfdruck, Verdampfungsenthalpie, ... (Grand Equilibrium)

Heterogene Systeme

Größere Systeme und genauere Berücksichtigung langreichweitiger Beiträge

Langreichweitige Korrektur

- ➢ Korrektur auf Basis des Dichteprofils nach Janeček¹ $U_i^{LRC} = \sum_k^N 2\pi \rho(y_k) \Delta y \int dr \ u(r) r$
- Winkelmittelung f
 ür mehrzentrige Modelle nach Lustig²

Winkelmittelung f
ür Dipole nach Cook und Rowlinson³

¹J. Janeček, *J. Phys. Chem. B* 110 (2006) 6264
²R. Lustig, *Mol. Phys.* 65 (1988) 175
³D. Cook, J. S. Rowlinson, *Proc. Roy. Soc. A.* 219 (1953) 405

Langreichweitige Korrektur: Beispiel CO₂

Der Aufwand für die explizit berechneten paarweisen Wechselwirkungen skaliert kubisch in r_{c} und lässt sich auf diesem Weg maßgeblich reduzieren.

29. Juni 2016

Einfluss der Systemgröße

Massiv-parallele Molekulardynamik

Als freie Software verfügbar unter http://www.ls1-mardyn.de/

Massiv-parallele Molekulardynamik

MD-Weltrekord mit Simulation eines homogenen flüssigen Zustandspunkts.

Validierung molekularer Modelle

2 LJ-Zentren + Quadrupol (2CLJQ)

S. Werth *et al.*, *Chem. Eng. Sci.* 121 (2015) 110

Validierung molekularer Modelle

Validierung molekularer Modelle

Unpolar, 1CLJ

Neon (Ne), Argon (Ar) Krypton (Kr), Xenon (Xe) Methan (CH₄)

Dipolar, 2CLJD

Kohlenmonoxid (CO) $R11 (CFCI_3)$ $R12 (CF_2CI_2)$ R13 (CF_3CI) R13B1 (CBrF₃) R22 (CHF_2CI) R23 (CHF₃) R41 (CH₂F) R123 (CHCl₂-CF₃) R124 (CHFCI-CF₃) R125 (CHF_2 - CF_3) R134a (CH_2F-CF_3) R141b (CH₃-CFCl₂) R142b (CH₃-CF₂CI) R143a (CH_3 - CF_3) R152a (CH₃-CHF₂) R40 (CH_3CI) R40B1 (CH₃Br) CH₃I R30B1 (CH₂BrCl) R20 (CHCl₃) R20B3 (CHBr₃) R21 (CHFCl₂) R32 ($CH_{2}F_{2}$) R30 (CH_2CI_2)

Dipolar, 2CLJD (Forts.)

R30B2 (CH_2Br_2) CH₂I₂ R12B2 (CBr_2F_2) R12B1 (CBrCIF₂) R10B1 (CBrCl₃) R161 (CH₂F-CH₃) R150a (CHCl₂-CH₃) R140 (CHCl₂-CH₂Cl) R140a (CCI_3 - CH_3) R130a (CH₂Cl-CCl₃) R160B1 (CH_2Br-CH_3) R150B2 (CHBr₂-CH₃) R131b (CH₂F-CCl₃) R123B1 (CHClBr-CF₂) R112a (CCl₃-CF₂Cl) R1141 (CHF=CH₂) R1132a ($CF_2 = CH_2$) R1140 (CHCI= CH_2) R1122 (CHCI= CF_2) R1113 (CFCI=CF₂) R1113B1 (CFBr= CF_2)

Quadrupolar, 2CLJQ

Fluor (F_2) Chlor (CI_2) Brom (Br_2) Iod (I_2) Stickstoff (N_2) Sauerstoff (O_2) Kohlendioxid (CO_2) Quadrupolar, 2CLJQ (Forts.)

Kohlenstoffdisulfid (CS₂) Ethan (C_2H_6) Ethylen (C_2H_4) Acetylen (C_2H_2) R116 (C_2F_6) R1114 (C_2F_4) R1110 (C_2CI_4) Propadien (CH₂=C=CH₂) Propin (CH_3 - $C\equiv CH$) Propylen (CH₃-CH=CH₂) R846 (SF_e) R14 (CF₄) R10 (CCl₄) R113 (CFCl₂-CF₂Cl) R114 (CF₂CI-CF₂CI) R115 (CF_3 - CF_2CI) R134 (CHF_2 - CHF_2) R150B2 (CH₂Br-CH₂Br) R114B2 (CBrF₂-CBrF₂) R1120 (CHCI=CCI₂)

Andere United-Atom-Modelle

Isobutan (C_4H_{10}) Cyclohexan (C_6H_{12}) Methanol (CH_3OH) Ethanol (C_2H_5OH) Formaldehyd $(CH_2=O)$ Dimethylether (CH_3-O-CH_3) Aceton (C_3H_6O)

Martin Horsch

Andere United-Atom-Modelle (Forts.)

Ammoniak (NH₃) Methylamin (NH₂-CH₃) Dimethylamin (CH₂-NH-CH₂) R227ea (CF₃-CHF-CF₃) Schwefeldioxid (SO₂) Ethylenoxid (C_2H_4O) Dimethylsulfid (CH₃-S-CH₃) Blausäure (NCH) Acetonitril (NC_2H_3) Thiophen (SC₄H₄) Nitromethan (NO₂CH₃) Phosgen (COCl₂) Benzol (C_eH_e) Toluol (C_7H_8) Chlorbenzol (C₆H₅Cl) Dichlorbenzol ($C_6H_4Cl_2$) Cyclohexanol ($C_6H_{11}OH$) Cyclohexanon ($C_6H_{10}O$) Cyan (C_2N_2) Chlorcyan (CCIN) Ameisensäure (CH_2O_2) Monoethylenglycol ($C_2H_6O_2$) Wasser (H_2O) Hydrazin (N_2H_4) Methylhydrazin (CH_6N_2) Dimethylhydrazin ($C_2H_8N_2$) Fluorbutan (C_4F_{10}) Ethylacetat ($C_4H_8O_2$) Hexamethyldisiloxan (C₆H₁₂OSi₂) Octamethylcyclotetrasiloxan (C_oH₂₄O₄Si₄)

Validierung molekularer Modelle

20 %

Unpolar, 1CLJ

Neon (Ne), Argon (Ar) Krypton (Kr), Xenon (Xe) Methan (CH₄)

Dipolar, 2CLJD

Kohlenmonoxid (CO) $R11 (CFCI_3)$ $R12 (CF_2CI_2)$ R13 (CF_3CI) R13B1 ($CBrF_{2}$) R22 (CHF_2CI) 12 % R23 (CHF_3) R41 (CH₃F) R123 (CHCl₂-CF₃) R124 (CHFCI-CF₃) R125 (CHF₂-CF₃) R134a (CH_2F-CF_3) R141b (CH₃-CFCl₂) R142b (CH_3 - CF_2CI) R143a (CH_3 - CF_3) R152a (CH_3 - CHF_2) R40 (CH_3CI) R40B1 (CH₃Br) CH₃I R30B1 (CH₂BrCl) R20 (CHCl₃) R20B3 (CHBr₃) R21 (CHFCl₂) R32 ($CH_{2}F_{2}$) R30 (CH_2CI_2)

Dipolar, 2CLJD (Forts.)

R30B2 (CH_2Br_2) CH₂I₂ R12B2 (CBr_2F_2) R12B1 (CBrCIF₂) R10B1 (CBrCl₃) R161 (CH₂F-CH₃) R150a (CHCl₂-CH₃) R140 (CHCl₂-CH₂Cl) R140a (CCI_3 - CH_3) R130a (CH₂CI-CCl₃) R160B1 (CH_2Br-CH_3) R150B2 (CHBr₂-CH₃) R131b (CH₂F-CCl₃) R123B1 (CHClBr-CF₃) R112a (CCl₃-CF₂Cl) R1141 (CHF=CH₂) R1132a ($CF_2 = CH_2$) R1140 (CHCI= CH_2) R1122 (CHCI= CF_{2}) R1113 (CFCI= CF_2) R1113B1 (CFBr=CF₂)

Quadrupolar, 2CLJQ

Fluor (F_2) Chlor (CI_2) Brom (Br_2) Iod (I_2) Stickstoff (N_2) Sauerstoff (O_2) Kohlendioxid (CO_2) Quadrupolar, 2CLJQ (Forts.)

Kohlenstoffdisulfid (CS₂) Ethan (C_2H_2) Ethylen (C_2H_4) Acetylen (C_2H_2) R116 (C_2F_6) R1114 (C_2F_4) R1110 (C_2CI_4) Propadien $(CH_2=C=CH_2)$ Propin (CH_3 -C=CH) Propylen (CH₃-CH=CH₂) R846 (SF₆) R14 (CF₄) R10 (CCl₄) R113 (CFCl₂-CF₂Cl) R114 (CF₂CI-CF₂CI) R115 (CF_3 - CF_2CI) R134 (CHF₂-CHF₂) R150B2 (CH₂Br-CH₂Br) R114B2 (CBrF₂-CBrF₂) R1120 (CHCI=CCI₂)

Andere United-Atom-Modelle

Isobutan (C_4H_{10}) Cyclohexan (C_6H_{12}) Methanol (CH₃OH) Ethanol (C₂H₅OH) Formaldehyd (CH₂=O) Dimethylether (CH₃-O-CH₃) Aceton (C_3H_6O)

Martin Horsch

Andere United-Atom-Modelle (Forts.)

Ammoniak (NH₃) Methylamin (NH₂-CH₃) Dimethylamin (CH₃-NH-CH₃) R227ea (CF₃-CHF-CF₃) Schwefeldioxid (SO₂) Ethylenoxid (C_2H_4O) Dimethylsulfid (CH₃-S-CH₃) Blausäure (NCH) Acetonitril (NC₂H₂) Thiophen (SC_4H_4) Nitromethan (NO₂CH₃) Phosgen (COCl₂) Benzol (C_eH_e) Toluol (C_7H_8) Chlorbenzol (C₆H₅Cl) 22 % Dichlorbenzol ($C_6H_4Cl_2$) Cyclohexanol ($C_6H_{11}OH$) Cyclohexanon ($C_6H_{10}O$) Cyan (C₂N₂) Chlorcyan (CCIN) Ameisensäure (CH₂O₂) Monoethylenglycol ($C_2H_6O_2$) Wasser (H₂O) Hydrazin (N_2H_4) Methylhydrazin (CH_6N_2) Dimethylhydrazin ($C_2H_8N_2$) Fluorbutan (C_4F_{10}) Ethylacetat ($C_4H_8O_2$) Hexamethyldisiloxan (C₆H₁₂OSi₂) Octamethylcyclotetrasiloxan (C₈H₂₄O₄Si₄)

Pareto-Optimalitätskriterium

Pareto-Optimalitätskriterium

drei Zielfunktionen

Multikriterielle Optimierung setzt massiv-parallele Modellierung voraus.

Patch plots zur Darstellung des Parameter- und des Zielfunktionsraums:

Pareto-optimale 2CLJQ-Modelle für Sauerstoff

K. Stöbener et al., Fluid Phase Equilib. 411 (2016) 33

Den Kriterien schlecht genügende Modelle Schritt für Schritt eliminieren:

Nach einigen Eliminierungsschritten beibehaltene 2CLJ-Modelle

Resilienz gegenüber Prioritätsänderungen

Paretoknie (resiliente Lösung): Lokalisierung durch Krümmung der Front.

Molekulare Modellierung von Gemischen

Die Reinstoffmodelle wurden an Bulkeigenschaften im VLE angepasst.

¹Y.-L. Huang *et al.*, *AIChE J.* 52 (2011) 1043

²T. Merker et al., J. Chem. Phys. 132 (2010) 234512

Molekulare Modellierung von Gemischen

Y.-L. Huang et al., AIChE J. 52 (2011) 1043

Molekulare Modellierung von Gemischen

Oberflächenspannung von Gemischen

Oberflächenspannung und Adsorption

Anreicherung des Leichtsieders

29. Juni 2016

Anreicherung mehrerer Komponenten

Oberflächenspannung und Benetzung

Haftung und Fortbewegung der Kontaktlinie

Kontaktlinienhaftung ist messbar und wird durch die Rauheit und Struktur der Festkörperoberfläche verursacht:

Quelle: F. Schellenberger et al., Phys. Rev. Lett. 116 (2016) 096101

D. Bonn *et al.*, *Rev. Mod. Phys.* 81 (2009) 739

Bei der Fortbewegung der Kontaktlinie ist ggf. eine freie Energiebarriere zu überwinden, dann handelt es sich um einen aktivierten Prozess.

Einfluss der Oberflächenmorphologie

"Morphological analysis is simply an ordered way of looking at things."¹ ¹F. Zwicky, *The Observatory* 68 (1948) 121

(Quelle: Optische Technologien und Photonik)

 Hu mag WD 152/2010
 5/26/2010

 10.00 kV 364 X 7.7 mm 2:58:34 PM

(Quelle: FBK)

Tropfen auf einer planaren Oberfläche

LJTS-Potential für Fluid (f) und Festkörper (s) mit $\sigma_{fs} = \sigma_{f}$ und $\varepsilon_{s} = 100 \varepsilon_{f}$.

Variation der Temperatur *T*, der Festkörperdichte ρ_s über den Parameter σ_s , der Fluid-Festkörper-Dispersionsenergie, d.h. des Parameters $\zeta = \varepsilon_{f_s} / \varepsilon_{f_s}$.

Tropfen auf einer planaren Oberfläche

LJTS-Potential für Fluid (f) und Festkörper (s) mit $\sigma_{fs} = \sigma_{f}$ und $\varepsilon_{s} = 100 \varepsilon_{f}$.

S. Becker et al., Langmuir 30 (2014) 13606

Korrelation des Dichteprofils:

$$\rho(r, y) = f(r) \cdot [h(y) + 1],$$

exponentiell gedämpfte Oszillation h(y),

tanh-Profil f(r).

Variation der Temperatur *T*, der Festkörperdichte ρ_s über den Parameter σ_s , der Fluid-Festkörper-Dispersionsenergie, d.h. des Parameters $\zeta = \varepsilon_{f_e} / \varepsilon_{f_e}$.

29. Juni 2016

Einfluss der Tropfengröße

Überlagerung größenabhängiger Effekte: $\cos \theta$

$$= \frac{1}{\gamma_{vl}} \left(\gamma_{vs} - \gamma_{ls} - \frac{\tau}{R_{lin}} \right)$$

Solvophobe und solvophile Oberflächen

Variation der Fluid-Festkörper-Dispersionsenergie ζ :

Korrelation: $\cos \theta$ proportional zu $\zeta - \zeta_0$ für $\zeta_0 = 0.52$ unabhängig von *T*.

Kritische Benetzung

Bei hohen Temperaturen tritt (vor-)kritische Benetzung auf:

Korrelation: cos θ proportional zu $\zeta - \zeta_0$ und zu $(1 - T/T_c)^{-2/3} + 1$.

Kritische Benetzung

Bei hohen Temperaturen tritt (vor-)kritische Benetzung auf:

Korrelation: cos θ proportional zu $\zeta - \zeta_0$ und zu $(1 - T/T_c)^{-2/3} + 1$.

Korrelation des Kontaktwinkels

- Simulation für verschiedene Festkörperdichten ρ_{s} = 1.1, 2.1 und 4.0 σ_{r}^{-3} .
- Beschreibung des Festkörpers durch $\rho_{\rm s}$ und die mittlere Potentialtiefe

$$W = -\frac{\iint dx \, dz \min_{y} u^{fs}(x, y, z)}{L_{x} L_{z}}$$

der Fluid-Festkörper-Wechselwirkung.

- Ermittlung von W_0 , der Wechselwirkungsstärke für θ = 90°, abhängig von ρ_s .
- Allgemeine Korrelation $\theta(T/T_c, W, \rho_s)$.

Korrelation des Kontaktwinkels

Vorhersage des Kontaktwinkels

Anwendung der Korrelation auf andere (dispersiv wechselwirkende) Festkörpermodelle zum Vergleich mit Ergebnissen aus der Literatur:

 $T = 0.7 \varepsilon$, Grzelak *et al.* (2010)

 $T = 0.75 \epsilon$, Ingebrigtsen und Toxværd (2007)

$$T = 0.8 \varepsilon, \text{ eigene Ergebnisse } (\blacktriangle) \text{ mit } \sigma_s = \sigma_f,$$

(•) $\sigma_s = 0.8 \sigma_f \text{ und } (\blacklozenge) \sigma_s = 0.64 \sigma_f$

 $T = 0.9 \varepsilon$, (Δ) Nijmeijer *et al.* (1990)

Benetzung strukturierter Oberflächen

Charakterisierung der Oberflächenstruktur durch Flächenverhältnisse:^{1, 2}

Die Größen w und φ beschreiben Eigenschaften der Oberfläche im Mittel.

¹R. N. Wenzel, Ind. Eng. Chem. 28 (1936) 988, ²A. Cassie, S. Baxter, Transact. Faraday Soc. 40 (1944) 546

Benetzung strukturierter Oberflächen

29. Juni 2016

Das Wenzel-Modell

Ansatz von Wenzel:¹

 Vergrößerung der Kontaktfläche zwischen Fluid und Festkörper um den Faktor

$$w = \frac{f_1 + f_2 + f_3}{f_1 + f_2}$$

• Ersetze γ_{vs} und γ_{ls} durch $w\gamma_{vs}$ und $w\gamma_{ls}$:

$$\cos \theta = \frac{w(\gamma_{\rm vs} - \gamma_{\rm ls})}{\gamma_{\rm vl}} = w \cos \theta_0$$

¹R. N. Wenzel, *Ind. Eng. Chem.* 28 (1936) 988

Das Cassie-Modell

MD-Simulation strukturierter Oberflächen

Untersuchung des Kontaktwinkels für verschiedene Oberflächenstrukturen:

29. Juni 2016

Kontaktwinkel im Imprägnierungszustand

Kontaktwinkel im Imprägnierungszustand

Heterogen strukturierte Oberflächen

Ergebnis im Imprägnierungszustand auf der homogen strukturierten Oberfläche: Kontaktwinkel θ = 45° für *B* = 6 σ_{f} und θ = 58° für *B* = 2 σ_{f} .

Kontaktlinienhaftung und Überlaufen

Gibbs'sche Ungleichung:

$$\theta_0 \leq \theta \leq \theta_0 + \alpha$$

Der epitaxiale Cassie-Zustand

Gibbs'sche Ungleichung:

$$\theta_0 \leq \theta \leq \theta_0 + \alpha$$

29. Juni 2016

Der epitaxiale Cassie-Zustand

Position der haftenden Kontaktlinie

epitaxialer Cassie-Zustand

Sprung der Kontaktlinie

Simulationsergebnisse stimmen mit der gibbs'schen Ungleichung überein.

Kontaktlinienbewegung durch Nukleation

Kontaktlinienbewegung durch Nukleation

Bevorzugter Mechanismus bei der Fortbewegung der Kontaktlinie:

- 1. Lokale Bewegung in radialer Richtung durch Nukleation einer Brücke zwischen benachbarten imprägnierten Zonen.
- 2. Vollständige oder teilweise Ausbreitung der Brücke in axialer Richtung.

Für eine radialsymmetrische Ausbreitung des Tropfens durch einen Sprung der Kontaktlinie wäre eine höhere freie Energiebarriere zu überwinden.¹

¹P. G. de Gennes, *Rev. Mod. Phys.* 57 (1985) 827

Asymmetrische Tropfenkontur

Bei entsprechender Vorgabe kanonischer Randbedingungen bilden sich dauerhaft wandernde Tropfen mit asymmetrischer Kontur ("Mützen").

Einordnung und Ausblick

Einordnung und Ausblick

Berkeley

UCDAVIS UNIVERSITY OF CALIFORNIA

Zusammenfassung

Computational Molecular Engineering ist die skalierbare molekulare Simulation mit physikalisch realistischen molekularen Modellen.

Die **Oberflächenspannung** und mit ihr verwandte Phänomene (z.B. Anreicherung an der Phasengrenze) können durch MD-Simulation heterogener Systeme untersucht werden.

Der **Kontaktwinkel** dispersiv wechselwirkender Systeme wurde für planare Oberflächen charakterisiert, der Einfluss der Morphologie wurde untersucht. Die Modelle von Wenzel und Cassie geben diesen nicht korrekt wieder.

Maßgeblich für heterogen strukturierte Oberflächen ist die Morphologie im Bereich der **Kontaktlinie**. Die Haftung der Kontaktlinie erfolgt nach der gibbs'schen Ungleichung, die Fortbewegung durch Nukleation (de Gennes).