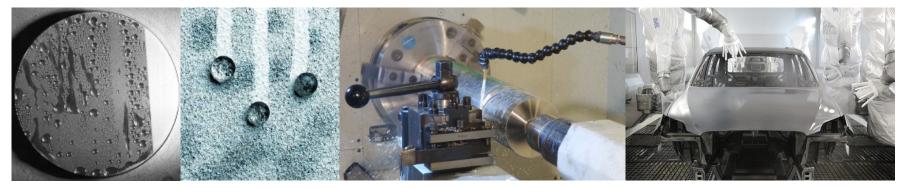
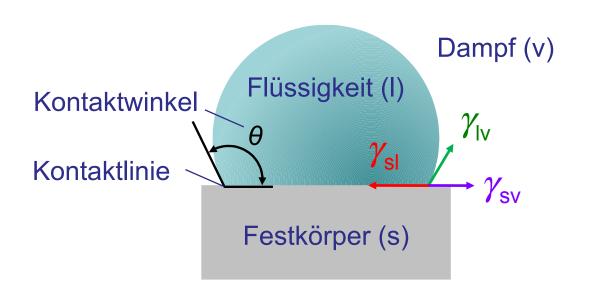


Oberflächenspannung, Benetzung und Kontaktlinienhaftung

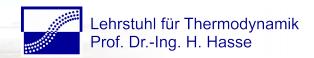

Martin Horsch

Lehrstuhl für Thermodynamik
Technische Universität Kaiserslautern

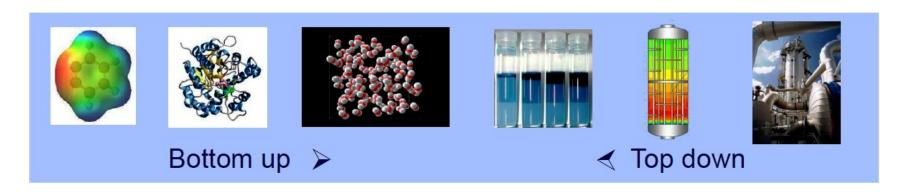

Kaiserslautern, 29. Juni 2016

Oberflächenspannung und Benetzung

(Abbildungen: public domain)

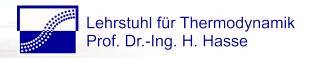


Young-Gleichung¹


$$\cos\theta = \frac{\gamma_{\text{sv}} - \gamma_{\text{sl}}}{\gamma_{\text{lv}}}$$

¹T. Young, *Phil. Trans. R. Soc. London* 95 (1805) 65

Computational Molecular Engineering



Naturwissenschaften (qualitative Korrektheit)

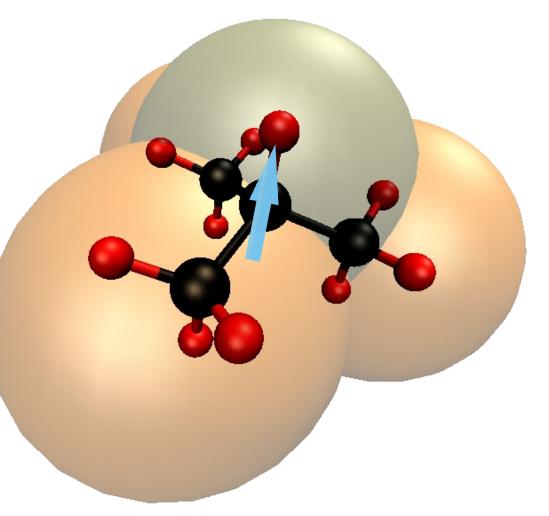
- Physikalisch realistische Modelle intermolekularer Wechselwirkungen
- Beiträge kurzreichweitiger Repulsion und Dispersion sowie langreichweitiger Elektrostatik

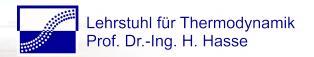
Ingenieurwissenschaften (quantitative Zuverlässigkeit)

- Qualitativ korrekte Modelle mit freien Parametern, die quantitativ an Stoffdaten angepasst werden können
- Zuverlässige Inter- und Extrapolation aufgrund realistischer Modelle

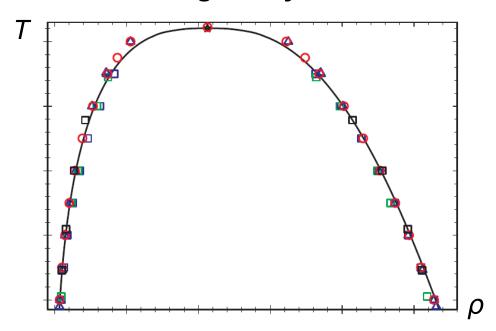
Molekulare Modellierung

Geometrie

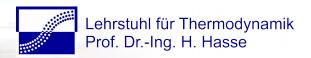

Bindungslängen und -winkel


Dispersion und Repulsion

Lennard-Jones-Potential: Längen- und Energieparameter

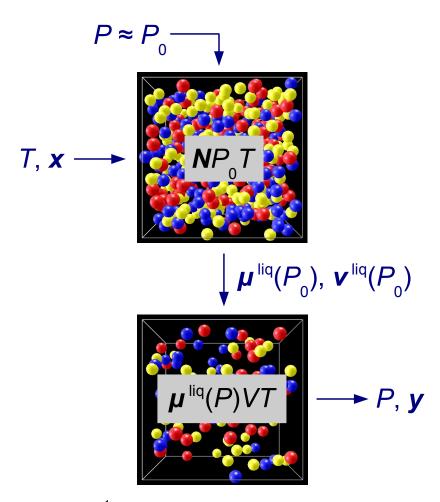

Elektrostatik

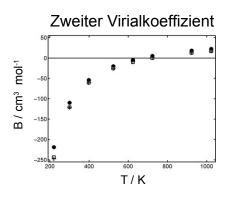
Punktpolaritäten (Ladung, Dipol, Quadrupol): Position, Stärke, ggf. Richtung

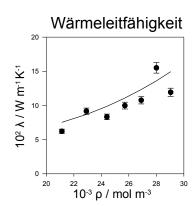


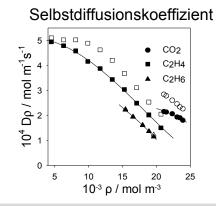
Homogene Systeme

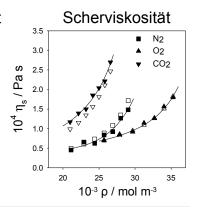
Dichte und Zusammensetzung auf Tauund Siedelinie, Dampfdruck, Verdampfungsenthalpie, ... (Grand Equilibrium)



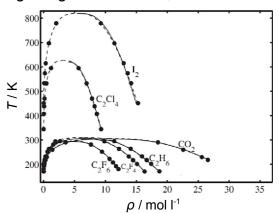

Homogene Systeme

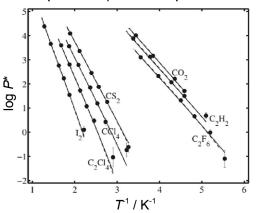



Dichte und Zusammensetzung auf Tauund Siedelinie, Dampfdruck, Verdampfungsenthalpie ... (Grand Equilibrium¹)



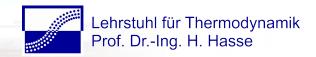
¹J. Vrabec, H. Hasse, *Mol. Phys.* 100 (2002) 3375

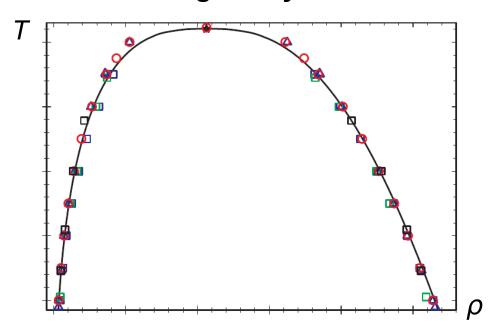




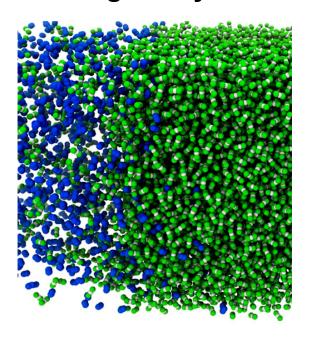
Für akademische Nutzer ist ms2 unter www.ms-2.de frei verfügbar.

Phasengleichgewicht: Dichte, Zusammensetzung und Dampfdruck (Grand-Equilibrium-Methode)

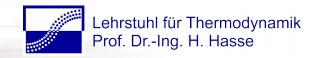



S. Deublein et al., Comp. Phys. Comm. 182 (2011) 2350

C. Glass et al., Comp. Phys. Comm. 185 (2014) 3302



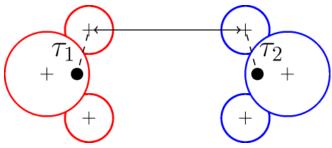
Homogene Systeme



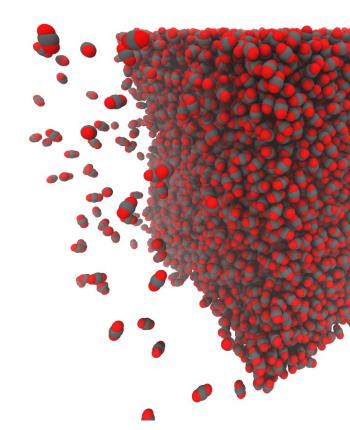
Dichte und Zusammensetzung auf Tauund Siedelinie, Dampfdruck, Verdampfungsenthalpie, ... (Grand Equilibrium)

Heterogene Systeme

Größere Systeme und genauere Berücksichtigung langreichweitiger Beiträge

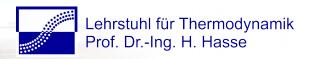


Langreichweitige Korrektur

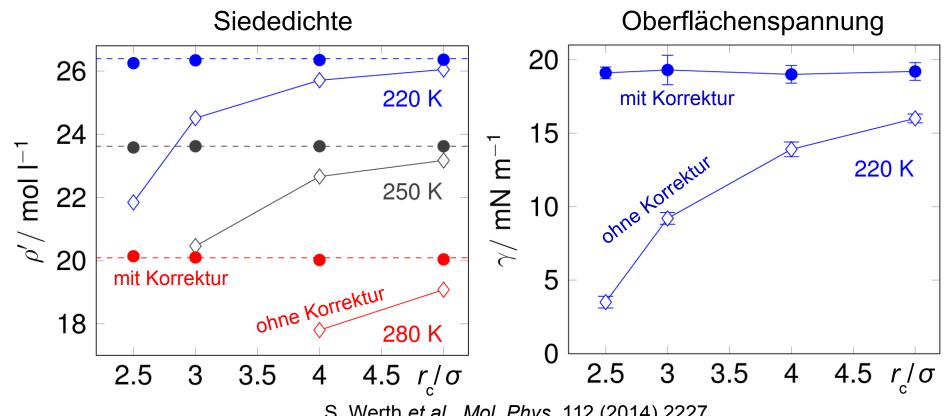

Korrektur auf Basis des Dichteprofils nach Janeček¹

$$U_{i}^{LRC} = \sum_{k}^{N} 2\pi \rho(y_{k}) \Delta y \int_{r'}^{\infty} dr \ u(r) r$$

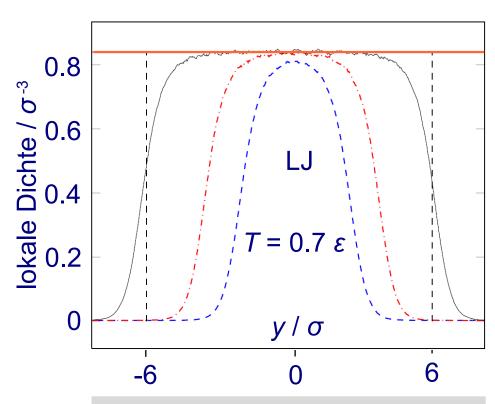
Winkelmittelung für mehrzentrige Modelle nach Lustig²



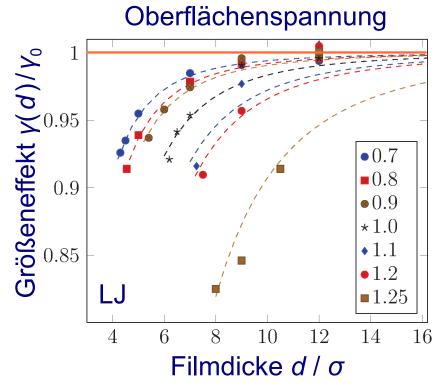
¹J. Janeček, *J. Phys. Chem. B* 110 (2006) 6264


²R. Lustig, *Mol. Phys.* 65 (1988) 175

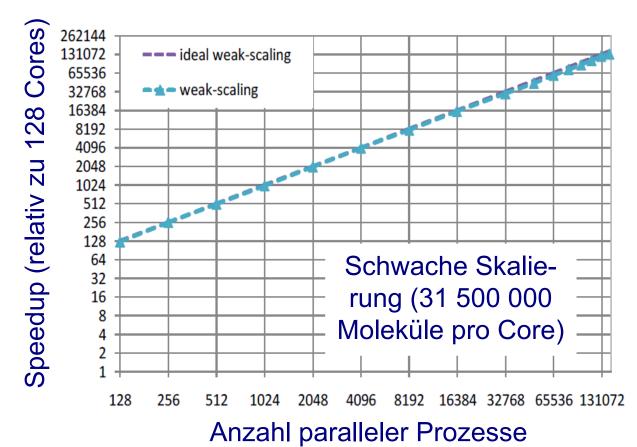
³D. Cook, J. S. Rowlinson, *Proc. Roy. Soc. A.* 219 (1953) 405


Langreichweitige Korrektur: Beispiel CO,

S. Werth et al., Mol. Phys. 112 (2014) 2227


Der Aufwand für die explizit berechneten paarweisen Wechselwirkungen skaliert kubisch in r_{2} und lässt sich auf diesem Weg maßgeblich reduzieren.

Einfluss der Systemgröße

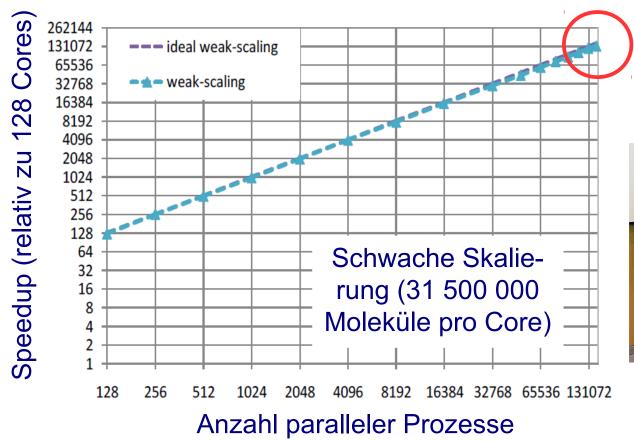

Die Dichte in der Mitte eines nanoskaligen Flüssigkeitsfilms weicht von der Bulkdichte ab.

Siededichte (Bulk)

S. Werth et al., Phys. A 392 (2013) 2359

Massiv-parallele Molekulardynamik

Is1 mardyn^{1, 2}

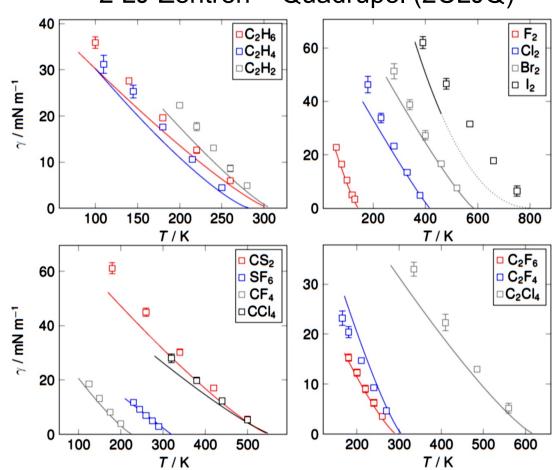

¹W. Eckhardt *et al.*, Proc. ISC 2013, *LNCS* 7905 (2013) 1, Heidelberg, Springer

²C. Niethammer et al., J. Chem. Theory Comput. 10 (2014) 4455

LJ Flüssiger Zustandspunkt

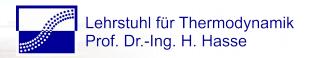
Als freie Software verfügbar unter http://www.ls1-mardyn.de/

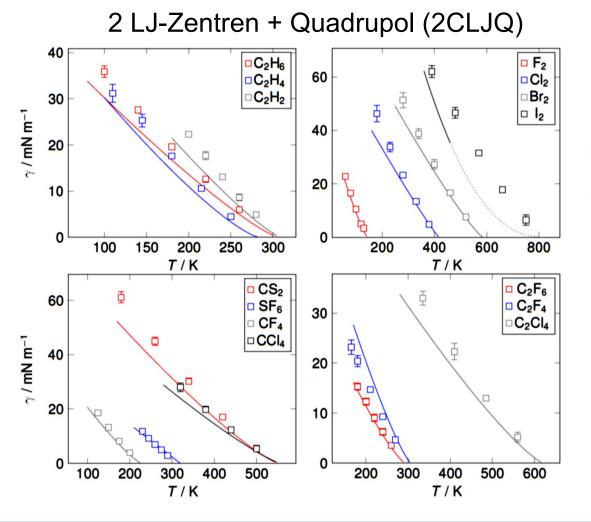
Massiv-parallele Molekulardynamik


Bis zu $N = 4 \cdot 10^{12}$ auf SuperMUC

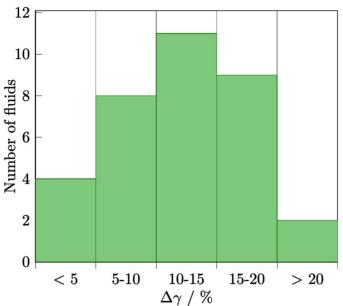
PRACE-ISC-Preis

MD-Weltrekord mit Simulation eines homogenen flüssigen Zustandspunkts.

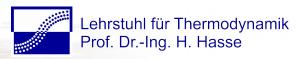

2 LJ-Zentren + Quadrupol (2CLJQ)


Anpassung an Bulk

Überschätzung der Oberflächenspannung


S. Werth *et al.*, *Chem. Eng. Sci.* 121 (2015) 110

andiciang molekalarer me


2 LJ-Zentren + Dipol (2CLJD)

S. Werth *et al.*, *Chem. Eng. Sci.* 121 (2015) 110

S. Werth *et al.*, *J. Chem. Phys.* 144 (2016) 054702

Unpolar, 1CLJ

Neon (Ne), Argon (Ar) Krypton (Kr), Xenon (Xe) Methan (CH₄)

Dipolar, 2CLJD

Kohlenmonoxid (CO) R11 (CFCI₃) R12 (CF₂Cl₂) R13 (CF₃CI) R13B1 (CBrF₃) R22 (CHF₂CI) R23 (CHF₃) R41 (CH₂F) R123 (CHCl₂-CF₃) R124 (CHFCI-CF₃) R125 (CHF₂-CF₃) R134a (CH₂F-CF₃) R141b (CH₃-CFCl₂) R142b (CH₃-CF₂CI) R143a (CH₃-CF₃) R152a (CH₃-CHF₂) R40 (CH₃CI) R40B1 (CH₃Br) CH₃I

CH₃I R30B1 (CH₂BrCl) R20 (CHCl₃) R20B3 (CHBr₃) R21 (CHFCl₂) R32 (CH₂F₂) R30 (CH₂Cl₂)

Dipolar, 2CLJD (Forts.)

R30B2 (CH₂Br₂) CH₂I₂ R12B2 (CBr₂F₂) R12B1 (CBrCIF₂) R10B1 (CBrCl₃) R161 (CH₂F-CH₃) R150a (CHCl₂-CH₃) R140 (CHCI₂-CH₂CI) R140a (CCI₃-CH₃) R130a (CH₂CI-CCI₃) R160B1 (CH₂Br-CH₃) R150B2 (CHBr₂-CH₃) R131b (CH₂F-CCl₃) R123B1 (CHClBr-CF₂) R112a (CCI₃-CF₂CI) R1141 (CHF=CH₂) R1132a (CF₂=CH₂) R1140 (CHCI=CH₂) R1122 (CHCI=CF₂) R1113 (CFCI=CF₂) R1113B1 (CFBr=CF₂)

Quadrupolar, 2CLJQ

Fluor (F₂)
Chlor (Cl₂)
Brom (Br₂)
Iod (I₂)
Stickstoff (N₂)
Sauerstoff (O₂)
Kohlendioxid (CO₂)

Quadrupolar, 2CLJQ (Forts.)

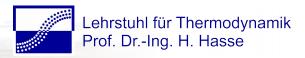
Kohlenstoffdisulfid (CS₂) Ethan (C₂H₆) Ethylen (C₂H₄) Acetylen (C₂H₂) R116 (C₂F₆) R1114 (C_2F_4) R1110 (C₂Cl₄) Propadien (CH₂=C=CH₂) Propin (CH₃-C≡CH) Propylen (CH₃-CH=CH₂) R846 (SF_e) R14 (CF₄) R10 (CCI₄) R113 (CFCI₂-CF₂CI) R114 (CF₂CI-CF₂CI) R115 (CF₃-CF₂CI) R134 (CHF₂-CHF₂) R150B2 (CH₂Br-CH₂Br) R114B2 (CBrF₂-CBrF₂) R1120 (CHCI=CCI₂)

Andere United-Atom-Modelle

Isobutan (C₄H₁₀) Cyclohexan (C₆H₁₂) Methanol (CH₃OH) Ethanol (C₂H₅OH) Formaldehyd (CH₂=O) Dimethylether (CH₃-O-CH₃) Aceton (C₃H₆O)

Andere United-Atom-Modelle (Forts.)

Methylamin (NH₂-CH₃) Dimethylamin (CH₂-NH-CH₂) R227ea (CF₃-CHF-CF₃) Schwefeldioxid (SO₂) Ethylenoxid (C₂H₄O) Dimethylsulfid (CH₃-S-CH₃) Blausäure (NCH) Acetonitril (NC₂H₃) Thiophen (SC₄H₄) Nitromethan (NO₂CH₃) Phosgen (COCI₂) Benzol (C₆H₆) Toluol (C_7H_8) Chlorbenzol (C₆H₅Cl) Dichlorbenzol (C₆H₄Cl₂) Cyclohexanol (C₆H₁₁OH) Cyclohexanon (C₆H₁₀O) Cyan (C₂N₂) Chlorcyan (CCIN) Ameisensäure (CH₂O₂) Monoethylenglycol (C₂H₆O₂) Wasser (H₂O) Hydrazin (N_2H_4)


Methylhydrazin (CH₆N₂)

Dimethylhydrazin (C₂H₈N₂)

Ammoniak (NH₃)

Fluorbutan (C_4F_{10}) Ethylacetat ($C_4H_8O_2$) Hexamethyldisiloxan ($C_6H_{12}OSi_2$) Octamethylcyclotetrasiloxan ($C_8H_{24}O_4Si_4$)

20 %

Unpolar, 1CLJ

Neon (Ne), Argon (Ar) Krypton (Kr), Xenon (Xe) Methan (CH₄)

Dipolar, 2CLJD

Kohlenmonoxid (CO) R11 (CFCI₃) R12 (CF₂Cl₂) R13 (CF₃CI) R13B1 (CBrF₂) R22 (CHF₂CI) **12** % R23 (CHF₃) R41 (CH₃F) R123 (CHCl₂-CF₃) R124 (CHFCI-CF₃) R125 (CHF₂-CF₃) R134a (CH₂F-CF₃) R141b (CH₃-CFCl₂) R142b (CH₃-CF₂CI) R143a (CH₃-CF₃) R152a (CH₃-CHF₂) R40 (CH₃CI) R40B1 (CH₃Br)

CH₃I

R30B1 (CH₂BrCl) R20 (CHCl₃) R20B3 (CHBr₃) R21 (CHFCI₂) R32 (CH₂F₂)

R30 (CH₂Cl₂)

Dipolar, 2CLJD (Forts.)

R30B2 (CH₂Br₂) CH₂I₂ R12B2 (CBr₂F₂) R12B1 (CBrCIF₂) R10B1 (CBrCl₃) R161 (CH₂F-CH₃) R150a (CHCl₂-CH₃) R140 (CHCl₂-CH₂CI) R140a (CCI₃-CH₃) R130a (CH₂CI-CCI₃) R160B1 (CH₂Br-CH₃) R150B2 (CHBr₂-CH₃) R131b (CH₂F-CCl₃) R123B1 (CHClBr-CF₃) R112a (CCI₃-CF₂CI) R1141 (CHF=CH₂) R1132a (CF₂=CH₂) R1140 (CHCI=CH₂) R1122 (CHCI=CF₂) R1113 (CFCI=CF₂) R1113B1 (CFBr=CF₂)

Quadrupolar, 2CLJQ

Fluor (F₂) Chlor (Cl₂) Brom (Br₂) $lod(I_2)$ Stickstoff (N₂) Sauerstoff (O₂) Kohlendioxid (CO₂)

Quadrupolar, 2CLJQ (Forts.)

Kohlenstoffdisulfid (CS₂) Ethan (C₂H₆) Ethylen (C₂H₄) Acetylen (C₂H₂) R116 (C_2F_6) R1114 (C_2F_4) R1110 (C₂Cl₄) Propadien (CH₂=C=CH₂) Propin (CH₃-C≡CH) Propylen (CH₃-CH=CH₂) R846 (SF₆) R14 (CF₄) R10 (CCI₄) R113 (CFCI₂-CF₂CI) R114 (CF₂CI-CF₂CI) R115 (CF₃-CF₂CI) R134 (CHF₂-CHF₂) R150B2 (CH₂Br-CH₂Br) R114B2 (CBrF₂-CBrF₂) R1120 (CHCI=CCI₂)

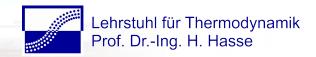
Andere United-Atom-Modelle

Isobutan (C₄H₁₀) Cyclohexan (C₆H₁₂) Methanol (CH₃OH) Ethanol (C₂H₅OH) Formaldehyd (CH₂=O) Dimethylether (CH₃-O-CH₃) Aceton (C₃H₆O)

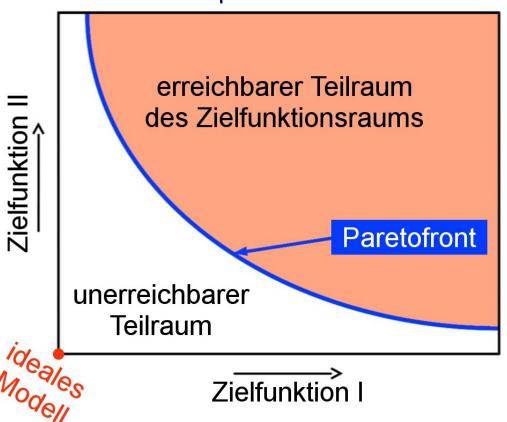
Andere United-Atom-Modelle (Forts.)

Methylamin (NH₂-CH₃) Dimethylamin (CH₃-NH-CH₃) R227ea (CF₃-CHF-CF₃) Schwefeldioxid (SO₂) Ethylenoxid (C_2H_4O) Dimethylsulfid (CH₃-S-CH₃) Blausäure (NCH) Acetonitril (NC₂H₃) Thiophen (SC₄H₄) Nitromethan (NO₂CH₃) Phosgen (COCI₂) Benzol (C_eH_e) Toluol (C₇H₈) Chlorbenzol (C₆H₅Cl)

Ammoniak (NH₃)

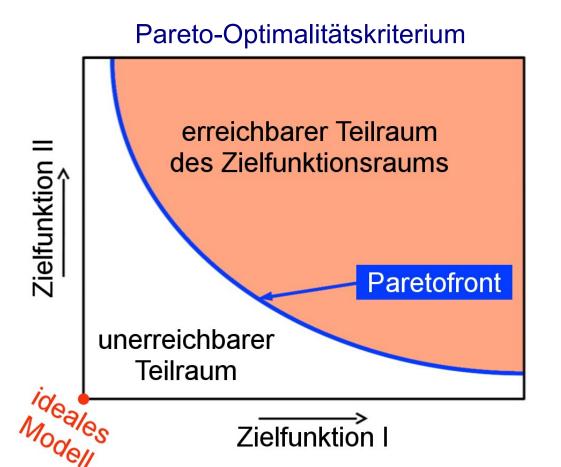

Dichlorbenzol (C₆H₄Cl₂) Cyclohexanol (C₆H₁₁OH) Cyclohexanon (C₆H₁₀O) Cyan (C₂N₂)

22 %

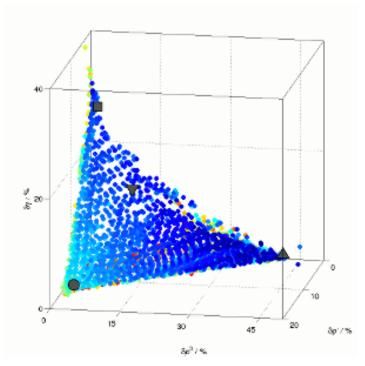

Chlorcyan (CCIN) Ameisensäure (CH₂O₂) Monoethylenglycol (C₂H₆O₂) Wasser (H₂O)

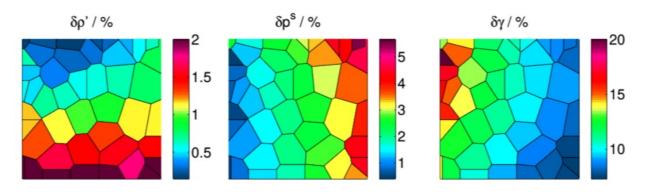
Hydrazin (N₂H₄) Methylhydrazin (CH₆N₂) Dimethylhydrazin (C₂H₈N₂) Fluorbutan (C₄F₁₀) Ethylacetat (C₄H₈O₂)

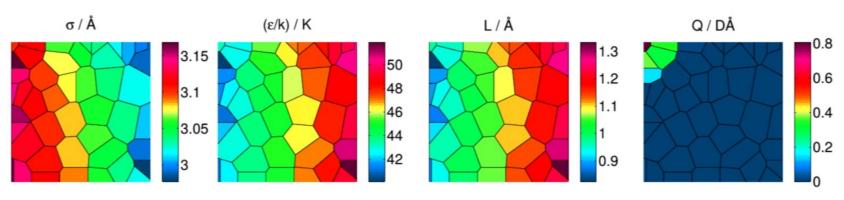
Hexamethyldisiloxan (C₆H₁₂OSi₂) Octamethylcyclotetrasiloxan (C₈H₂₄O₄Si₄)



Pareto-Optimalitätskriterium

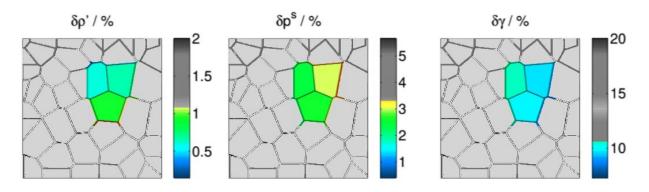



drei Zielfunktionen

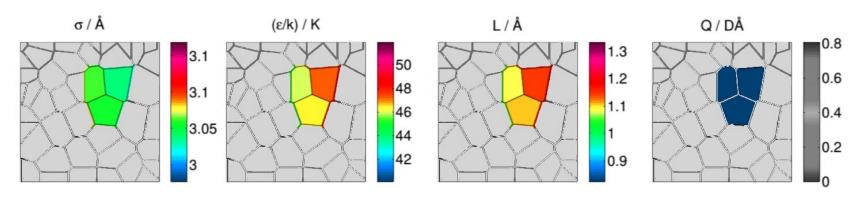

2CLJQ-Modelle für CO₂

Multikriterielle Optimierung setzt massiv-parallele Modellierung voraus.

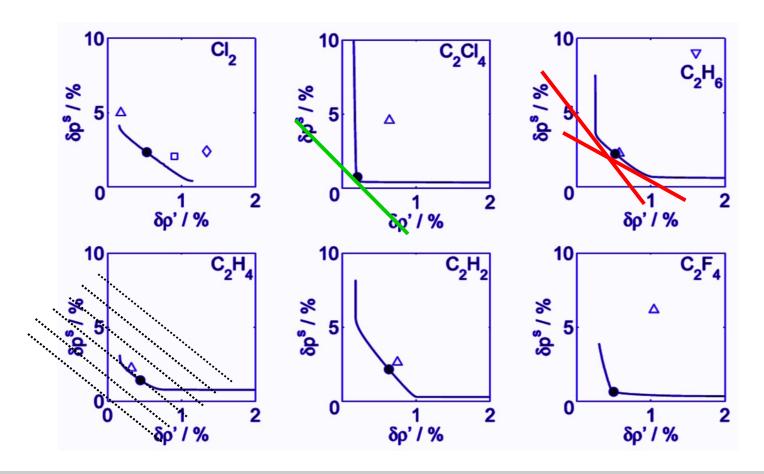
Patch plots zur Darstellung des Parameter- und des Zielfunktionsraums:



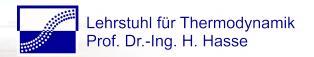
Pareto-optimale 2CLJQ-Modelle für Sauerstoff



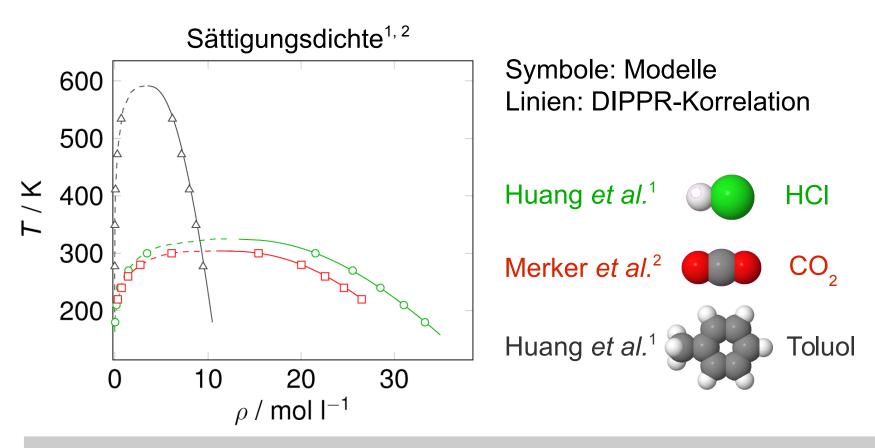
K. Stöbener et al., Fluid Phase Equilib. 411 (2016) 33


Den Kriterien schlecht genügende Modelle Schritt für Schritt eliminieren:

Nach einigen Eliminierungsschritten beibehaltene 2CLJ-Modelle

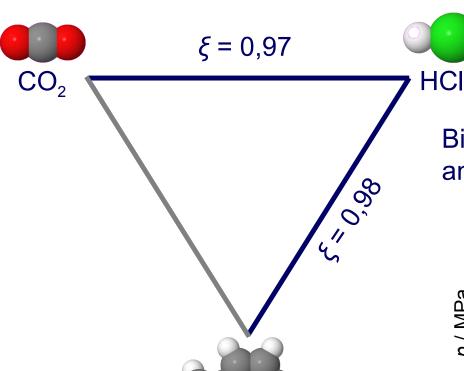


Resilienz gegenüber Prioritätsänderungen



Paretoknie (resiliente Lösung): Lokalisierung durch Krümmung der Front.

Molekulare Modellierung von Gemischen

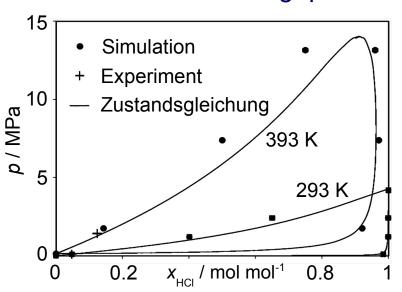


Die Reinstoffmodelle wurden an Bulkeigenschaften im VLE angepasst.

¹Y.-L. Huang *et al.*, *AIChE J.* 52 (2011) 1043

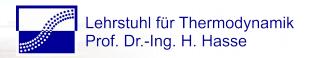
²T. Merker et al., J. Chem. Phys. 132 (2010) 234512

Molekulare Modellierung von Gemischen

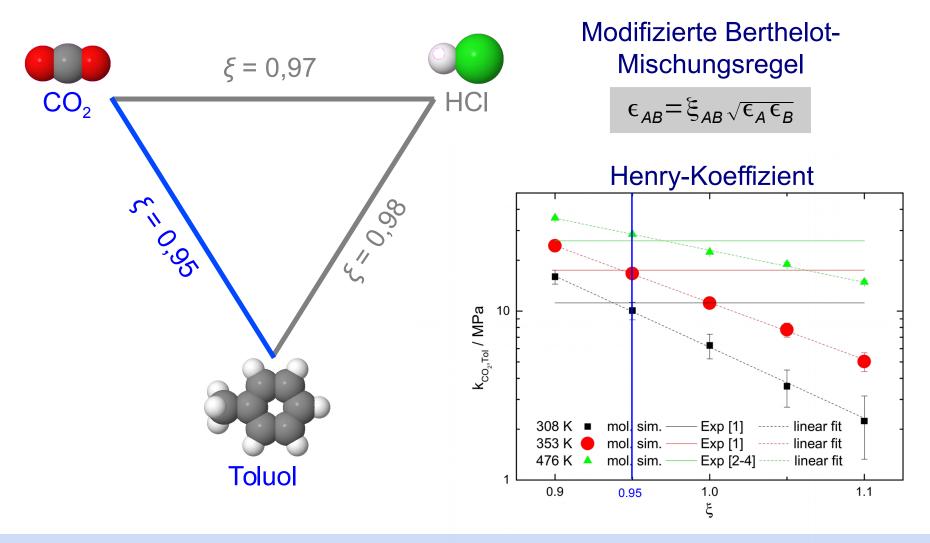


Toluol

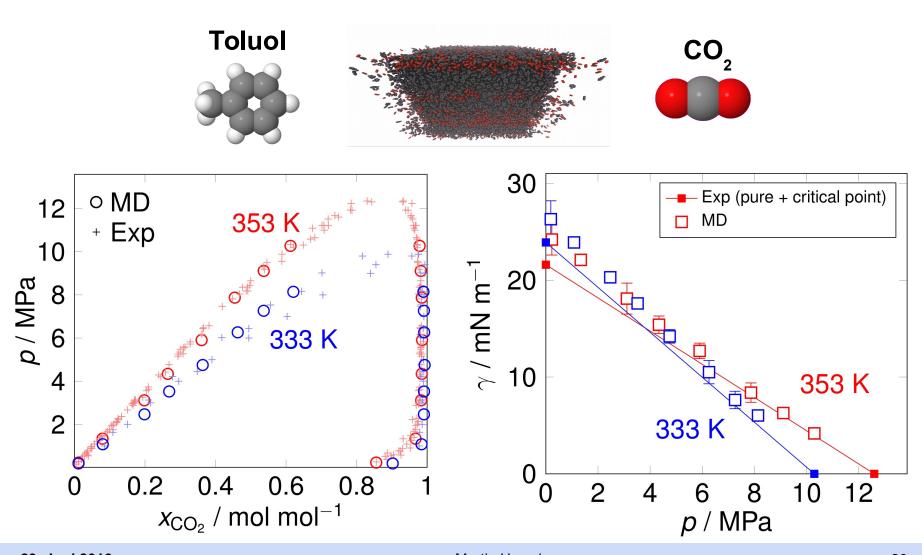
Modifizierte Berthelot-Mischungsregel

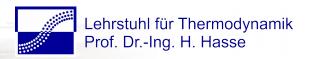

$$\epsilon_{AB} = \xi_{AB} \sqrt{\epsilon_A \epsilon_B}$$

Binäre Wechselwirkungsparameter ξ an Bulkdaten im VLE angepasst:

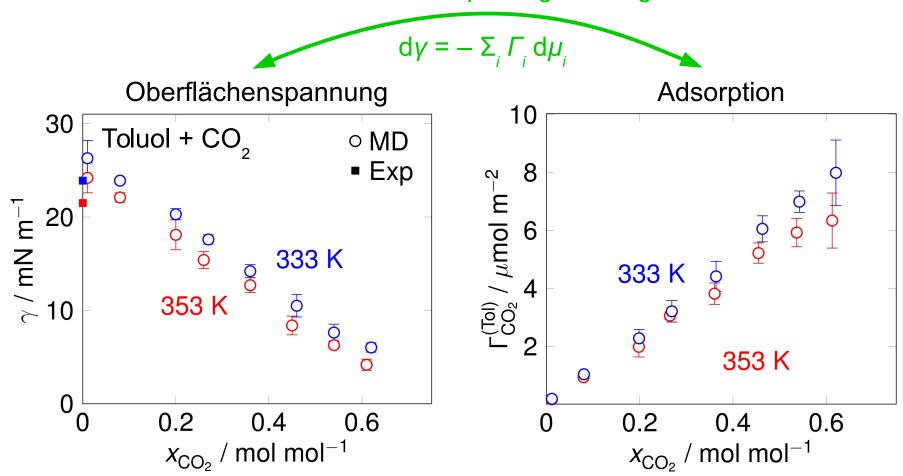


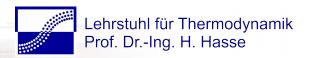
Y.-L. Huang et al., AIChE J. 52 (2011) 1043


Molekulare Modellierung von Gemischen

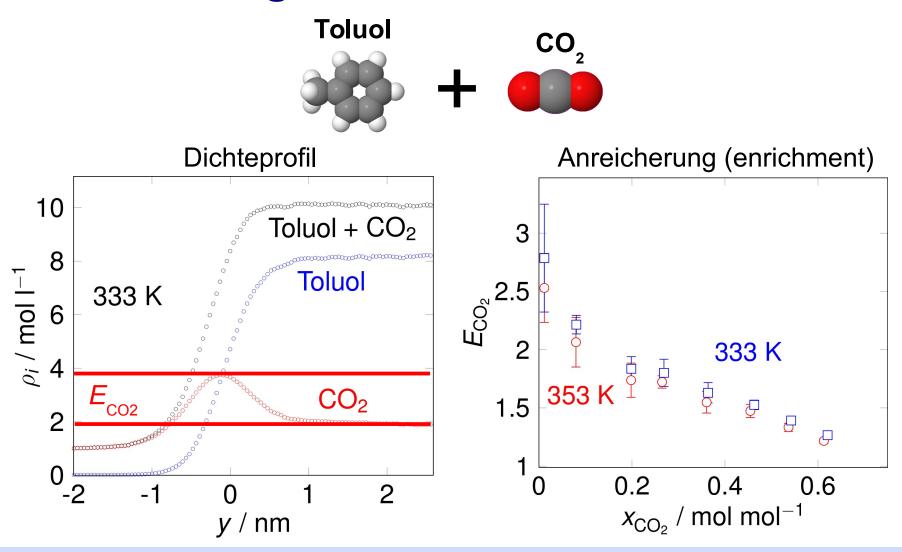


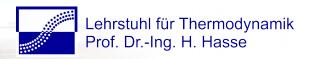
Oberflächenspannung von Gemischen

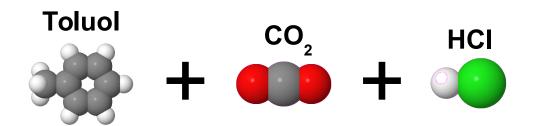


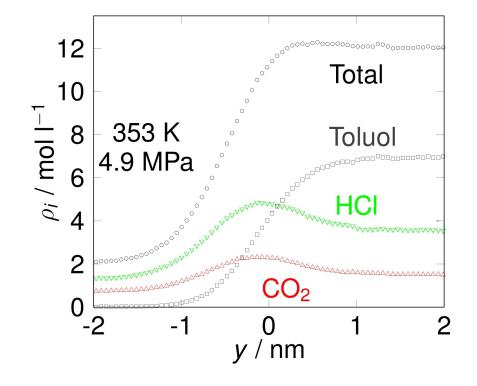


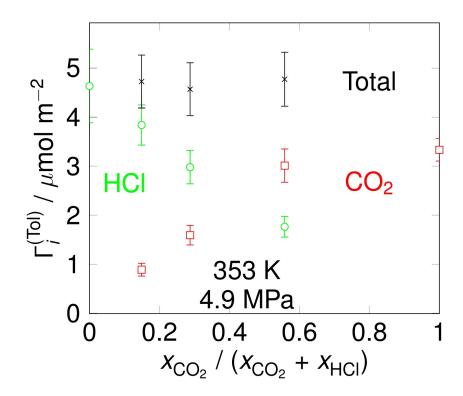
Oberflächenspannung und Adsorption

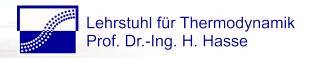


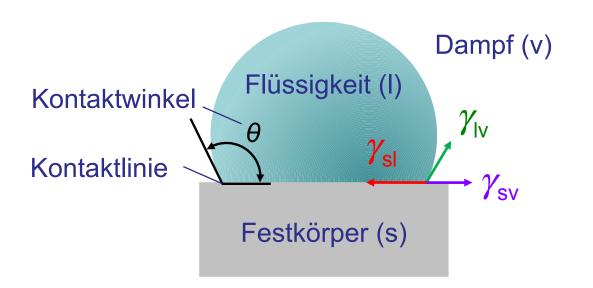


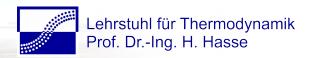



Anreicherung des Leichtsieders

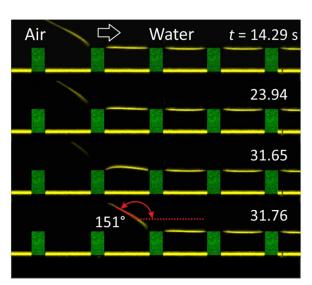


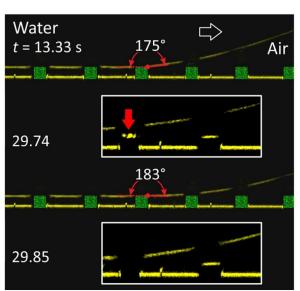

Anreicherung mehrerer Komponenten

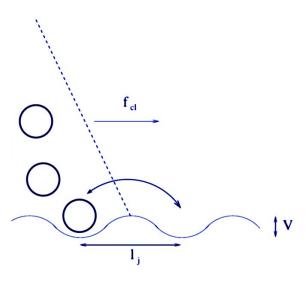




Oberflächenspannung und Benetzung



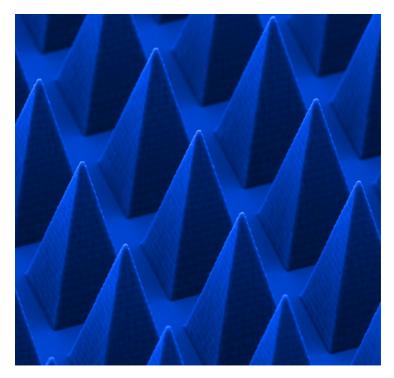

Young-Gleichung $\cos\theta = \frac{\gamma_{sv} - \gamma_{sl}}{\gamma_{lv}}$



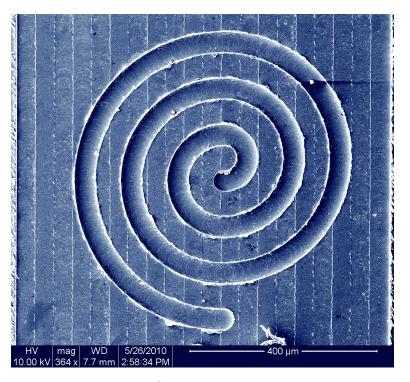
Haftung und Fortbewegung der Kontaktlinie

Kontaktlinienhaftung ist messbar und wird durch die Rauheit und Struktur der Festkörperoberfläche verursacht:

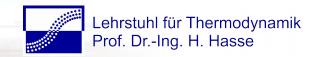
Quelle: F. Schellenberger et al., Phys. Rev. Lett. 116 (2016) 096101


D. Bonn et al., Rev. Mod. Phys. 81 (2009) 739

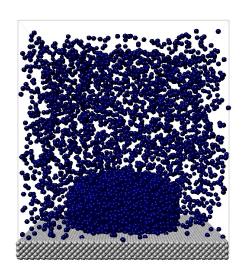
Bei der Fortbewegung der Kontaktlinie ist ggf. eine freie Energiebarriere zu überwinden, dann handelt es sich um einen aktivierten Prozess.


Einfluss der Oberflächenmorphologie

"Morphological analysis is simply an ordered way of looking at things." ¹

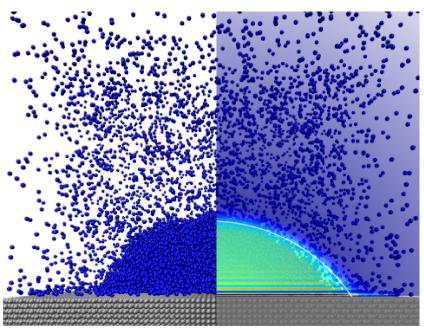

F. Zwicky, *The Observatory* 68 (1948) 121

(Quelle: Optische Technologien und Photonik)



(Quelle: FBK)

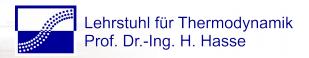
Tropfen auf einer planaren Oberfläche


LJTS-Potential für Fluid (f) und Festkörper (s) mit $\sigma_{fs} = \sigma_{f}$ und $\varepsilon_{s} = 100 \varepsilon_{f}$.

Variation der Temperatur T, der Festkörperdichte $\rho_{\rm s}$ über den Parameter $\sigma_{\rm s}$, der Fluid-Festkörper-Dispersionsenergie, d.h. des Parameters $\zeta = \varepsilon_{\rm fs} / \varepsilon_{\rm f}$.

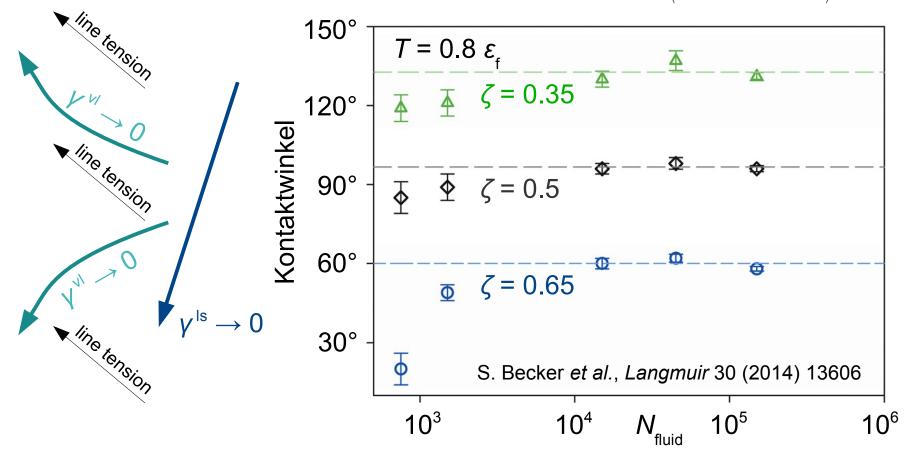
Tropfen auf einer planaren Oberfläche

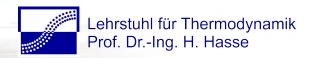
LJTS-Potential für Fluid (f) und Festkörper (s) mit $\sigma_{fs} = \sigma_{f}$ und $\varepsilon_{s} = 100 \varepsilon_{f}$.


S. Becker et al., Langmuir 30 (2014) 13606

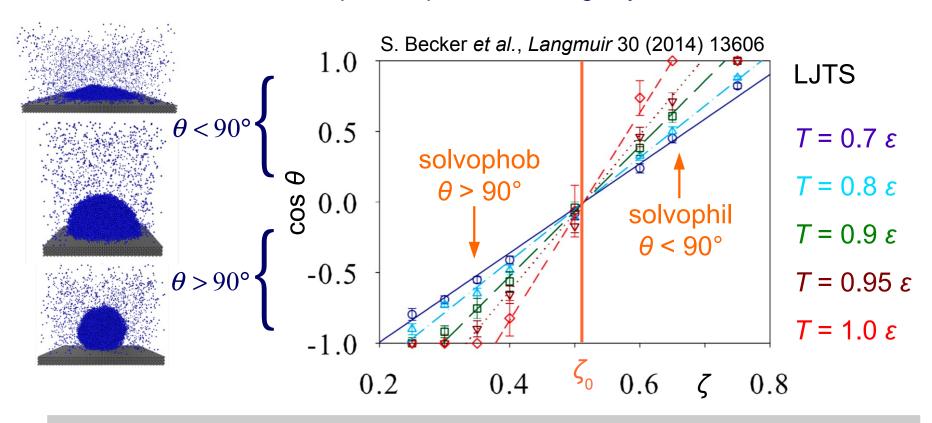
Korrelation des Dichteprofils:

$$\rho(r, y) = f(r) \cdot [h(y) + 1],$$

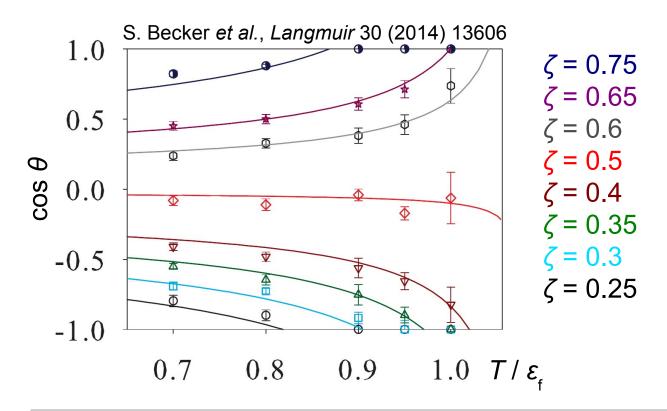

exponentiell gedämpfte Oszillation h(y), tanh-Profil f(r).


Variation der Temperatur T, der Festkörperdichte $\rho_{\rm s}$ über den Parameter $\sigma_{\rm s}$, der Fluid-Festkörper-Dispersionsenergie, d.h. des Parameters $\zeta = \varepsilon_{\rm fs} / \varepsilon_{\rm f}$.

Einfluss der Tropfengröße


Überlagerung größenabhängiger Effekte: $\cos \theta = \frac{1}{\gamma_{vl}} \left(\gamma_{vs} - \gamma_{ls} - \frac{\tau}{R_{lin}} \right)$

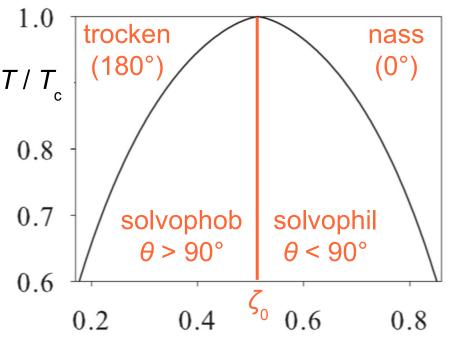
Solvophobe und solvophile Oberflächen


Variation der Fluid-Festkörper-Dispersionsenergie ζ :

Korrelation: $\cos \theta$ proportional zu $\zeta - \zeta_0$ für $\zeta_0 = 0.52$ unabhängig von T.

Kritische Benetzung

Bei hohen Temperaturen tritt (vor-)kritische Benetzung auf:



Festkörper mit $\sigma_{\rm s} = \sigma_{\rm f}$ und $\rho_{\rm s} = 1.07 \ \sigma_{\rm f}^{-3}$

Korrelation: cos θ proportional zu $\zeta - \zeta_0$ und zu $(1 - T/T_c)^{-2/3} + 1$.

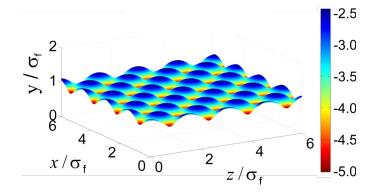
Kritische Benetzung

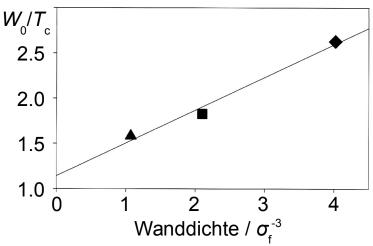
Bei hohen Temperaturen tritt (vor-)kritische Benetzung auf:

Festkörper mit $\sigma_{\rm s} = \sigma_{\rm f}$ und $\rho_{\rm s} = 1.07 \ \sigma_{\rm f}^{-3}$

Fluid-Festkörper-Dispersionsenergie

Korrelation: $\cos \theta$ proportional zu $\zeta - \zeta_0$ und zu $(1 - T/T_c)^{-2/3} + 1$.

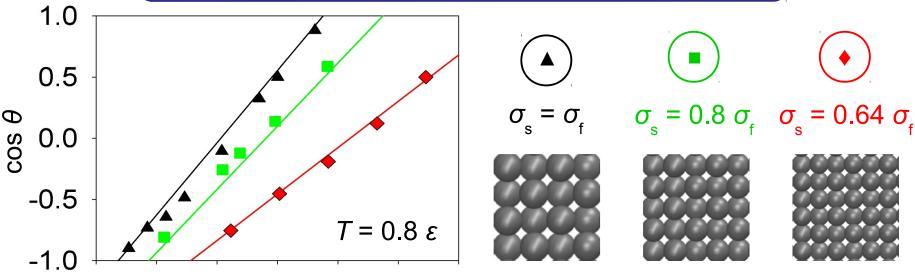

Korrelation des Kontaktwinkels


- Simulation für verschiedene Festkörperdichten $\rho_{\rm s}$ = 1.1, 2.1 und 4.0 $\sigma_{\rm f}^{\text{-3}}$.
- Beschreibung des Festkörpers durch $\rho_{_{\rm S}}$ und die mittlere Potentialtiefe

$$W = -\frac{\iint dx \, dz \, \min_{y} u^{fs}(x, y, z)}{L_{x} L_{z}}$$

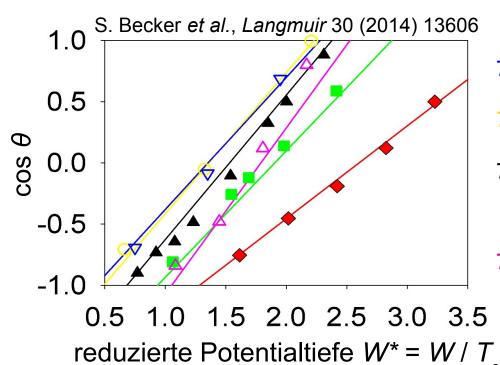
der Fluid-Festkörper-Wechselwirkung.

- Ermittlung von W_0 , der Wechselwirkungsstärke für θ = 90°, abhängig von $\rho_{\rm s}$.
- Allgemeine Korrelation $\theta(T/T_c, W, \rho_s)$.



Korrelation des Kontaktwinkels

reduzierte Potentialtiefe $W^* = W / T$

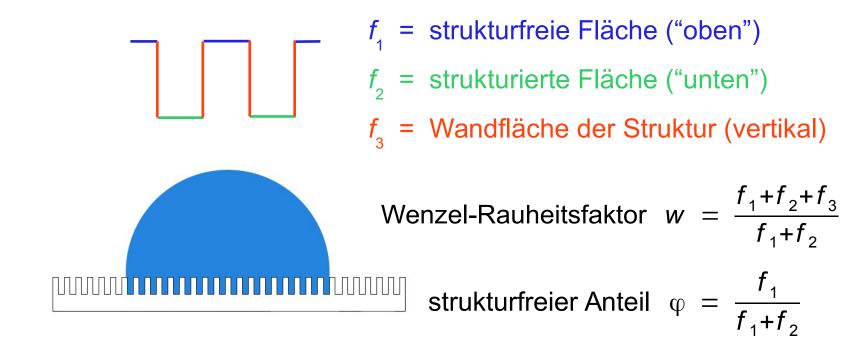

$$\cos\theta(T,W,\rho_{s}) = \frac{\alpha}{kT_{c}} \left(1 + \left[\frac{T_{c} - T}{T_{c}}\right]^{\frac{\beta}{2}} \left(W - W_{0}(\rho_{s})\right)\right)$$

0.5 1.0 1.5 2.0 2.5 3.0 3.5 S. Becker et al., Langmuir 30 (2014) 13606

Vorhersage des Kontaktwinkels

Anwendung der Korrelation auf andere (dispersiv wechselwirkende) Festkörpermodelle zum Vergleich mit Ergebnissen aus der Literatur:

 $T = 0.7 \varepsilon$, Grzelak *et al.* (2010)

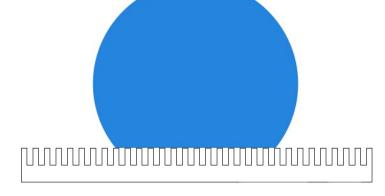

 $T = 0.75 \varepsilon$, Ingebrigtsen und Toxværd (2007)

 $T = 0.8 \ \varepsilon$, eigene Ergebnisse (\blacktriangle) mit $\sigma_s = \sigma_f$, (\blacksquare) $\sigma_s = 0.8 \ \sigma_f$ und (\blacklozenge) $\sigma_s = 0.64 \ \sigma_f$

 $T = 0.9 \, \varepsilon$, (Δ) Nijmeijer *et al.* (1990)

Benetzung strukturierter Oberflächen

Charakterisierung der Oberflächenstruktur durch Flächenverhältnisse: 1,2



Die Größen w und φ beschreiben Eigenschaften der Oberfläche im Mittel.

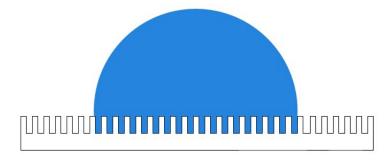
¹R. N. Wenzel, *Ind. Eng. Chem.* 28 (1936) 988, ²A. Cassie, S. Baxter, *Transact. Faraday Soc.* 40 (1944) 546

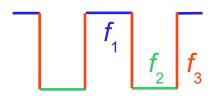
Benetzung strukturierter Oberflächen

$$\cos \theta < -\frac{1-\varphi}{w-\varphi}$$

Wenzel

$$-\frac{1-\varphi}{w-\varphi} < \cos\theta < \frac{1-\varphi}{w-\varphi}$$




$$\cos \theta > \frac{1-\varphi}{w-\varphi}$$

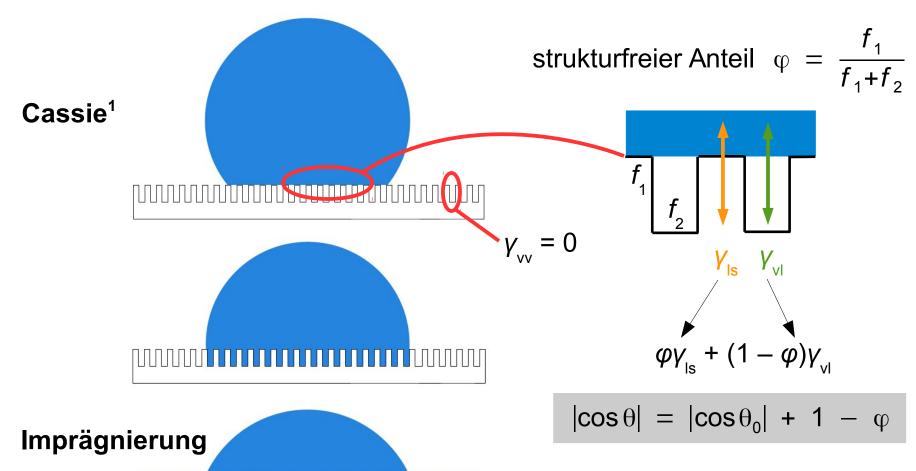
Das Wenzel-Modell

Young-Gleichung
$$\cos \theta_0 = \frac{\gamma_{\rm vs} - \gamma_{\rm ls}}{\gamma_{\rm vl}}$$

Wenzel

Ansatz von Wenzel:1

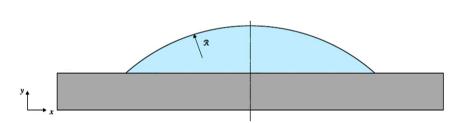
 Vergrößerung der Kontaktfläche zwischen Fluid und Festkörper um den **Faktor**


$$w = \frac{f_1 + f_2 + f_3}{f_1 + f_2}.$$

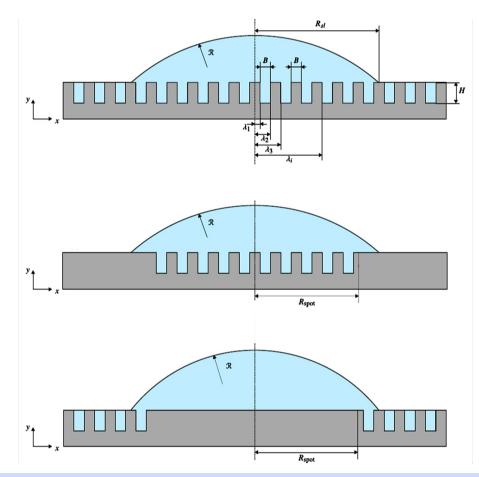
• Ersetze γ_{vs} und γ_{ls} durch $w\gamma_{vs}$ und $w\gamma_{ls}$:

$$\cos \theta = \frac{w(\gamma_{vs} - \gamma_{ls})}{\gamma_{vl}} = w \cos \theta_0$$

¹R. N. Wenzel, *Ind. Eng. Chem.* 28 (1936) 988

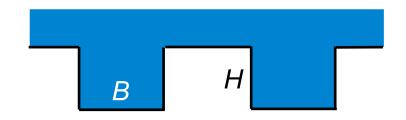

Das Cassie-Modell

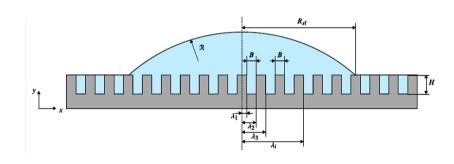
¹A. Cassie, S. Baxter, *Transact. Faraday Soc.* 40 (1944) 546


MD-Simulation strukturierter Oberflächen

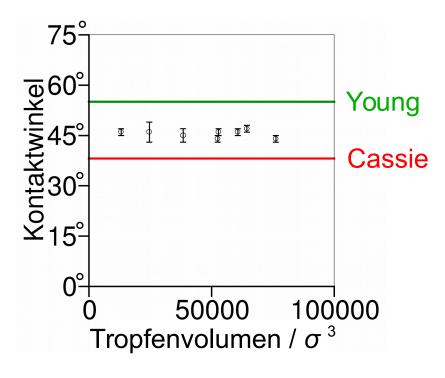
Untersuchung des Kontaktwinkels für verschiedene Oberflächenstrukturen:

Abhängigkeit $\theta_0(T, W, \rho_s)$ bekannt¹


¹S. Becker *et al.*, *Langmuir* 30 (2014) 13606

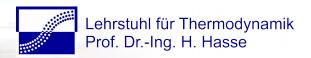


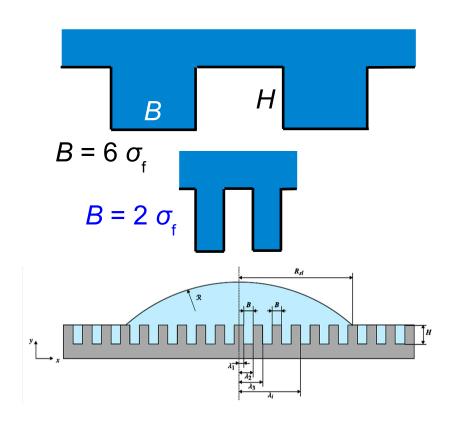
Kontaktwinkel im Imprägnierungszustand

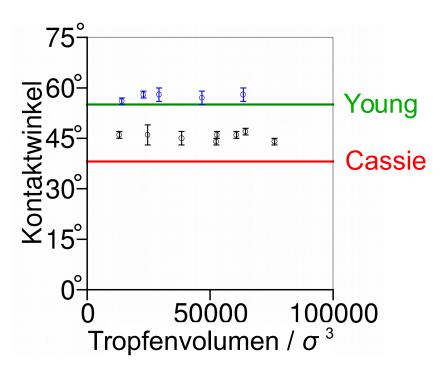


Höhe $H = 4.7 \sigma_{\rm f}$ Breite $B = 6 \sigma_{\rm f}$

Wenzel-Rauheitsfaktor: w = 1.78


Strukturfreier Anteil: $\varphi = 0.5$


Young-Kontaktwinkel: $\theta_0 = 55^{\circ}$

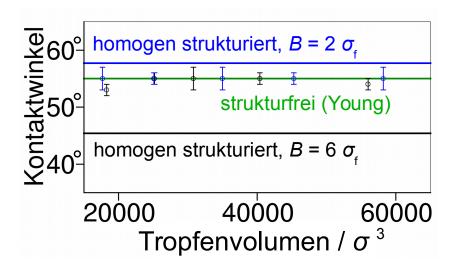

Wenzel-Modell: $\theta = 0^{\circ}$

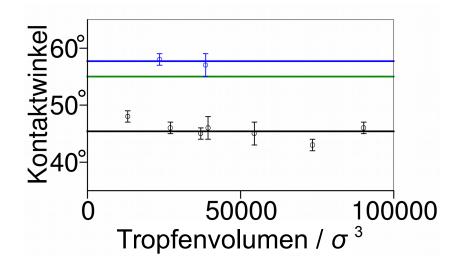
Cassie-Modell: $\theta = 38^{\circ}$

Kontaktwinkel im Imprägnierungszustand

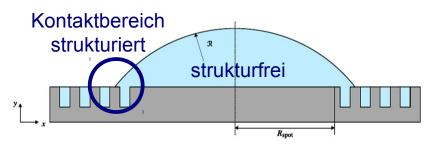
Young-Kontaktwinkel: $\theta_0 = 55^{\circ}$

Wenzel-Rauheitsfaktor: w = 1.78 und 3.35


Wenzel-Modell: $\theta = 0^{\circ}$

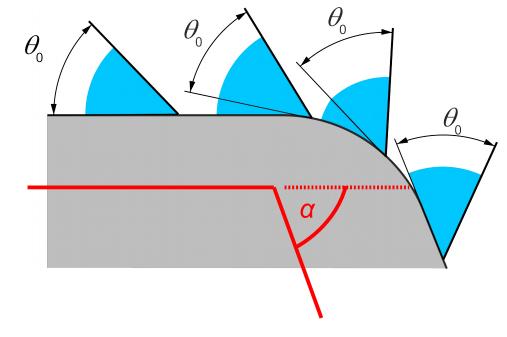

Strukturfreier Anteil: $\varphi = 0.5$

Cassie-Modell: $\theta = 38^{\circ}$

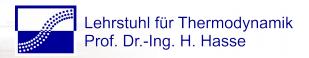

Heterogen strukturierte Oberflächen

Ergebnis im Imprägnierungszustand auf der homogen strukturierten Oberfläche: Kontaktwinkel θ = 45° für B = 6 $\sigma_{\rm f}$ und θ = 58° für B = 2 $\sigma_{\rm f}$.

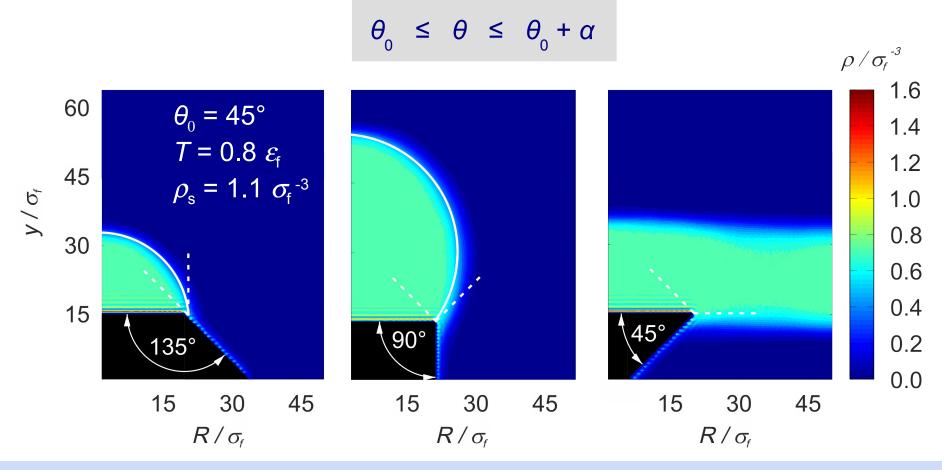


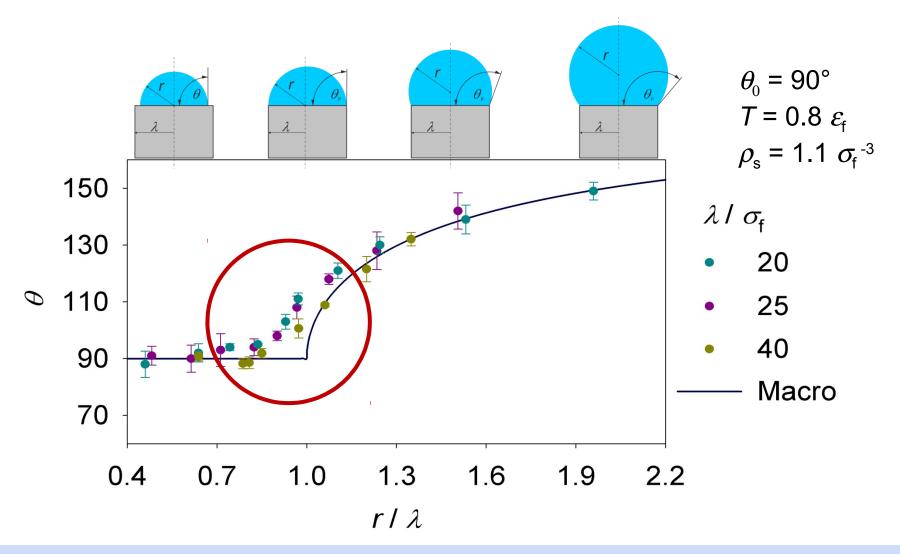


Kontaktlinienhaftung und Überlaufen


Gibbs'sche Ungleichung:

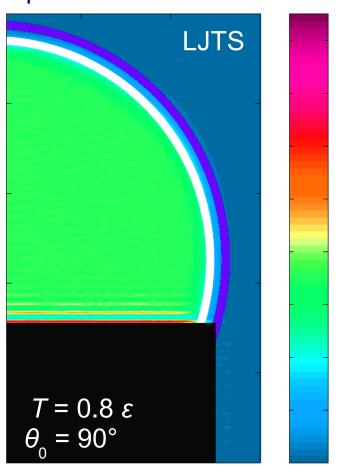
$$\theta_0 \leq \theta \leq \theta_0 + \alpha$$

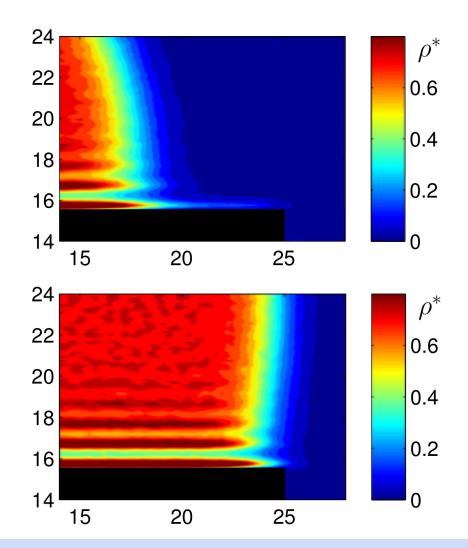


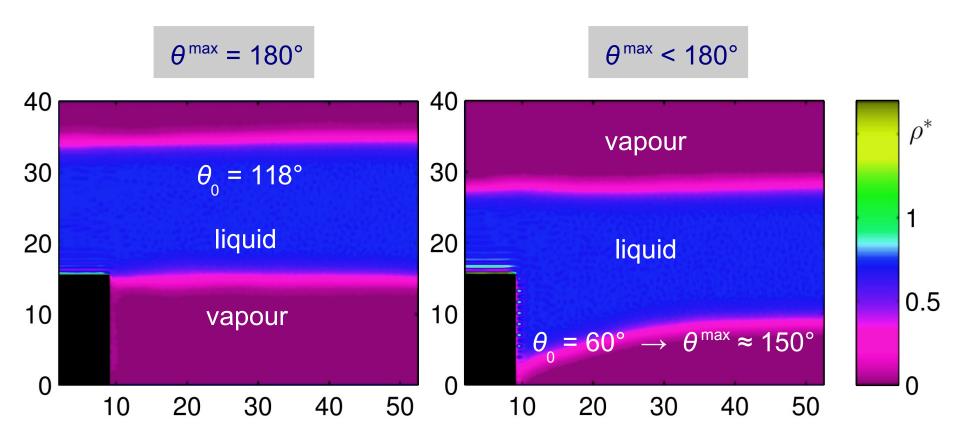


Der epitaxiale Cassie-Zustand

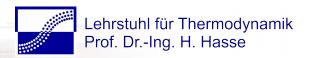
Gibbs'sche Ungleichung:

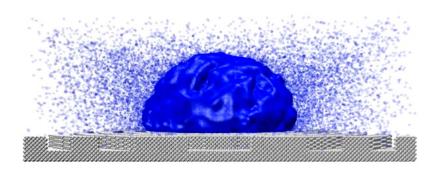



Der epitaxiale Cassie-Zustand

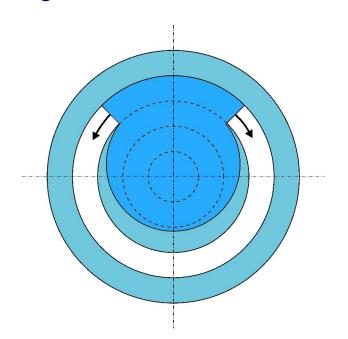

Position der haftenden Kontaktlinie

epitaxialer Cassie-Zustand




Sprung der Kontaktlinie

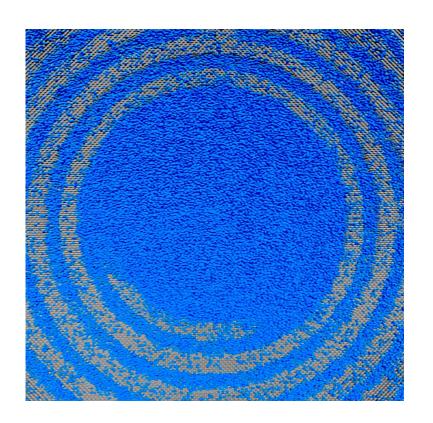
Simulationsergebnisse stimmen mit der gibbs'schen Ungleichung überein.

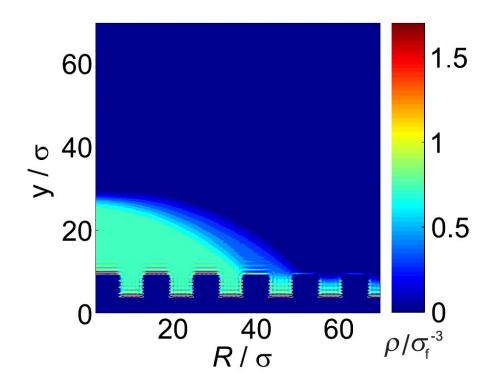


Kontaktlinienbewegung durch Nukleation

Kontaktlinienbewegung durch Nukleation

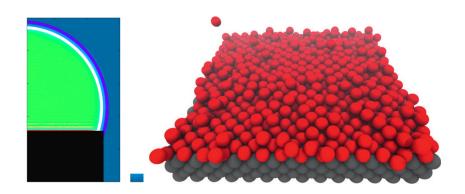
Bevorzugter Mechanismus bei der Fortbewegung der Kontaktlinie:

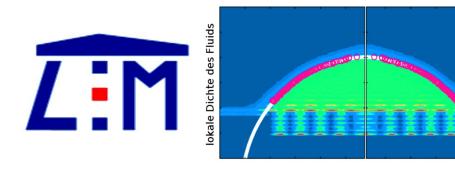

- 1. Lokale Bewegung in radialer Richtung durch Nukleation einer Brücke zwischen benachbarten imprägnierten Zonen.
- 2. Vollständige oder teilweise Ausbreitung der Brücke in axialer Richtung.


Für eine radialsymmetrische Ausbreitung des Tropfens durch einen Sprung der Kontaktlinie wäre eine höhere freie Energiebarriere zu überwinden.¹

¹P. G. de Gennes, *Rev. Mod. Phys.* 57 (1985) 827

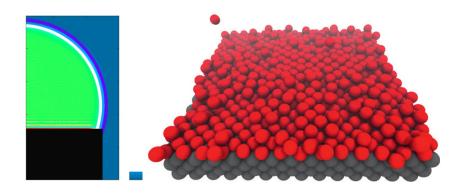
Asymmetrische Tropfenkontur

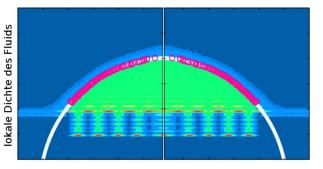

Bei entsprechender Vorgabe kanonischer Randbedingungen bilden sich dauerhaft wandernde Tropfen mit asymmetrischer Kontur ("Mützen").



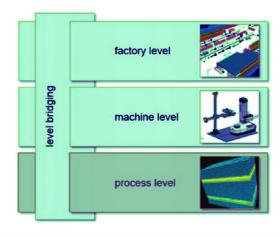


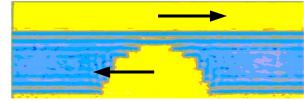
Einordnung und Ausblick





Einordnung und Ausblick





Zusammenfassung

Computational Molecular Engineering ist die skalierbare molekulare Simulation mit physikalisch realistischen molekularen Modellen.

Die **Oberflächenspannung** und mit ihr verwandte Phänomene (z.B. Anreicherung an der Phasengrenze) können durch MD-Simulation heterogener Systeme untersucht werden.

Der **Kontaktwinkel** dispersiv wechselwirkender Systeme wurde für planare Oberflächen charakterisiert, der Einfluss der Morphologie wurde untersucht. Die Modelle von Wenzel und Cassie geben diesen nicht korrekt wieder.

Maßgeblich für heterogen strukturierte Oberflächen ist die Morphologie im Bereich der **Kontaktlinie**. Die Haftung der Kontaktlinie erfolgt nach der gibbs'schen Ungleichung, die Fortbewegung durch Nukleation (de Gennes).