

Multicriteria optimization of force field models for molecular simulation of interfacial and bulk properties

Martin Thomas Horsch,^{1, 2} Stephan Werth,¹ Katrin Stöbener,^{1, 3} Peter Klein,³ Karl-Heinz Küfer,³ and Hans Hasse¹

¹Laboratory of Engineering Thermodynamics, University of Kaiserslautern, Germany, ²Department of Chemical Engineering, Indian Institute of Technology Kanpur, ³Fraunhofer Institute for Industrial Mathematics, Kaiserslautern, Germany

Indo-German MSO Conference Bankura, West Bengal, February 23, 2017 Computational Molecular Engineering

Molecular simulation software development

Molecular simulation of bulk fluid systems

ms2 is freely available for academic use: register at www.ms-2.de

M. T. Horsch, S. Werth, K. Stöbener, P. Klein, K.-H. Küfer, and H. Hasse

Scalable molecular dynamics simulation

- Spatial domain decomposition
- Dynamic load balancing
- Communication (almost) only with neighbour processes
- Linked-cell data structure near-field pair potentials
- Summation techniques, e.g. Janeček and FMM

http://www.ls1-mardyn.de/

Long range correction at planar interfaces

¹Janeček, *J. Phys. Chem. B,* 110, 6264, **2006**; ²Goujon *et al., J. Chem. Theory Comput.* 11, 4573, **2015**;
³Werth *et al., Mol. Phys.* 112, 2227, **2014**; ⁴Cook and Rowlinson, *Proc. Roy. Soc. A* 219, 405, **1953**;
⁵Werth *et al.*, Mol. Phys. 113, 3750, 2015; ⁶Lustig, *Mol. Phys.* 65, 175, **1988**.

Feb 23, 2017

Computational Molecular Engineering

Physics (qualitative accuracy)

- Physically realistic modelling of intermolecular interactions
- Separate contributions due to repulsive and dispersive as well as electrostatic interactions

Engineering
(quantitative reliability)

- No blind fitting, but parameters of *effective pair potentials* are adjusted to experimental data
- Physical realism facilitates reliable interpolation and extrapolation

Molecular model validation

2CLJQ models:

- 2 LJ centres
- 1 quadrupole

Fit of parameters σ , ε , L, Q to VLE data of 29 fluids by Stoll et al.

Deviation:

· δρ' ≈ 1 % $\cdot \delta P^{\text{sat}} \approx 5\%$

- simulation
- **DIPPR** correlation

No interfacial properties were considered for the parameterization.

Molecular model validation: Surface tension

Feb 23, 2017

M. T. Horsch, S. Werth, K. Stöbener, P. Klein, K.-H. Küfer, and H. Hasse

Molecular model validation: Surface tension

Oxygen (O₂)

Non-polar: 1CLJ

Neon (Ne) Argon (Ar) Krypton (Kr) Xenon (Xe) Methane (CH₄)

Dipolar: 2CLJD

Carbon monoxide (CO)	
R11 (CFCl ₃)	
R12 (CF_2CI_2)	
R13 (CF ₃ Cl)	
R13B1 (CBrF ₃)	
R22 (CHF ₂ CI)	+12%
R23 (CHF ₃)	/ /
R41 (CH ₃ F)	
R123 (CHCl ₂ -CF ₃)	
R124 (CHFCI-CF ₃)	
R125 (CHF ₂ -CF ₃)	
R134a (CH ₂ F-CF ₃)	
R141b (CH ₃ -CFCl ₂)	
R142b (CH ₃ -CF ₂ Cl)	
R143a (CH ₃ -CF ₃)	
R152a (CH ₃ -CHF ₂)	
R40 (CH ₃ CI)	
R40B1 (CH ₃ Br)	
CH₃I	
R30B1 (CH ₂ BrCl)	
R20 (CHCl ₃)	
R20B3 (CHBr ₃)	
R21 (CHFCl ₂)	

Quadrupolar: 2CLJQ

Fluorine (F₂) Chlorine (Cl₂) Bromine (Br₂) lodine (l₂) Nitrogen (N_2)

R32 (CH_2F_2)

R30 (CH₂Cl₂)

CH₂I₂

R30B2 (CH₂Br₂)

R12B2 (CBr₂F₂)

R12B1 (CBrCIF₂) R10B1 (CBrCl₃) R161 (CH₂F-CH₃)

R150a (CHCl₂-CH₃)

R140 (CHCl₂-CH₂Cl)

R130a (CH₂Cl-CCl₂)

R160B1 (CH₂Br-CH₃)

R150B2 (CHBr₂-CH₃)

R123B1 (CHCIBr-CF₃)

R131b (CH_2F-CCI_3)

R112a (CCl₃-CF₂Cl)

R1141 (CHF=CH₂)

R1132a (CF₂=CH₂)

R1140 (CHCI= CH_{a})

R1122 (CHCI=CF₂)

R1113 (CFCI=CF₂) R1113B1 (CFBr=CF₂)

R140a (CCI_3 - CH_3)

Carbon dioxide (CO₂) Carbon sulfide (CS₂) Ethane (C_2H_6) Ethylene (C_2H_4) Acetylene (C_2H_2) R116 (C_2F_6) R1114 ($C_{2}F_{4}$) R1110 (C_2CI_4) Propadiene (CH₂=C=CH₂) Propyne (CH_3 - $C\equiv CH$)

Isobutane (C_4H_{10})

Cyclohexane (C_6H_{12})

Formaldehyde (CH₂=O)

Methylamine (NH₂-CH₃)

R227ea (CF₃-CHF-CF₃)

Ethylene oxide (C_2H_4O)

Sulfur dioxide (SO₂)

Dimethyl ether (CH₃-O-CH₃)

Dimethylamine (CH₃-NH-CH₃)

Methanol (CH₃OH)

Ethanol (C₂H₅OH)

Acetone (C_3H_6O)

Ammonia (NH₃)

Propylene (CH₃-CH=CH₂) R846 (SF_e) R14 (CF₄) R10 (CCl₄) R113 (CFCl₂-CF₂Cl) R114 (CF₂CI-CF₂CI) R115 (CF_3 - CF_2CI) R134 (CHF₂-CHF₂) R150B2 (CH₂Br-CH₂Br) R114B2 ($CBrF_2$ - $CBrF_2$) R1120 (CHCI=CCI₂)

Literature models by J. Stoll, H. Hasse, J. Vrabec et al., 2001 - 2016

Multicentric United Atom Models

Dimethyl sulfide (CH₃-S-CH₃) Hydrogen cyanide (HCN) Acetonitrile (NC₂H₂) Thiophene (SC₄H₄) Nitromethane (CH₃NO₂) Phosgene (COCl₂) Benzene (C_eH_e) Toluene (C_7H_8) Chlorobenzene (C_eH₅Cl) Dichlorobenzene $(C_6H_4Cl_2)$ Cyclohexanol ($C_{6}H_{11}OH$) Cyclohexanone ($C_6H_{10}O$)

+22%

Cyanogen (C_2N_2) Cvanogen chloride (CCIN) Formic acid (CH₂O₂) Ethylene glycol ($C_2H_6O_2$) TIP4P/2012 water (H₂O) Hydrazine (N_2H_4) Monomethylhydrazine ($CH_{e}N_{2}$) Dimethylhydrazine ($C_2H_8N_2$) Perfluorobutane (C_4F_{10}) Ethyl acetate $(C_4H_8O_2)$ HMDSO ($C_6H_{12}OSi_2$) D4 ($C_8H_{24}O_4Si_4$)

Feb 23, 2017

Multicriteria molecular model optimization

Pareto optimality criterion error in quantity Yreachable agreement Pareto set unreachable error in quantity X

Multiple objectives

Multicriteria optimization requires massively parallel molecular modelling.

Feb 23, 2017

Computation of the Pareto set

p model parameters

(here, p = 4)

- LJ size parameter σ
- LJ energy parameter ε
- Model elongation L
- Multipole moment μ or Q

Dimension of Pareto set $d \le p$.

q optimization criteria

(here, q = 3)

- Saturated liquid density ρ'
- Saturated vapour pressure p^s
- Vapour-liquid surface tension γ

Dimension of the Pareto set cannot be greater than q - 1.

 $d = \min(p, q - 1).$

(here, *d* = 2)

Computation of the Pareto set^{1, 2}

Multicriteria optimization problem

Simultaneously minimized objective functions f_{ξ} with $\xi \in \{\rho', \rho^s, \gamma\}$ given by

$$f_{\xi} = \langle \delta \xi^{2} \rangle_{0.55T_{c}^{exp} < T < 0.95T_{c}^{exp}} = \lim_{N \to \infty} \frac{1}{N+1} \sum_{i=0}^{N} \left(1 - \frac{\xi^{sim}(T)}{\xi^{exp}(T)} \right)_{T/T_{c} = 0.55+0.4i/N}^{2}$$
(here: $N = 9$).

Sandwiching

Alternating construction of inner (reachable) and outer (unreachable) approximations, assuming *local convexity* of the Pareto set.

Hyperboxing

In non-convex regions (hyperboxes), Pascoletti-Serafini scalarization is employed to obtain a suitable local single-criterion optimization problem.

¹M. Bortz et al., Comput. Chem. Eng. 60, 354, **2014**; ²Stöbener et al., Fluid Phase Equilib. 411, 33, **2016**.

Feb 23, 2017

Multicriteria molecular model optimization^{1, 2}

Representation of objective and parameter spaces by **patch plots**:

¹Stöbener et al., Fluid Phase Equilib. 373, 100, **2014**; ²Stöbener et al., Fluid Phase Equilib. 408, 141, **2016**.

Feb 23, 2017

Multicriteria molecular model optimization^{1, 2}

Requirements for the criteria follow the priorities of the target application:

Restrictions imposed on 2CLJ models of molecular oxygen

¹Stöbener et al., Fluid Phase Equilib. 373, 100, **2014**; ²Stöbener et al., Fluid Phase Equilib. 408, 141, **2016**.

Feb 23, 2017

Multicriteria molecular model optimization^{1, 2}

Requirements for the criteria follow the priorities of the target application:

2CLJ models of molecular oxygen fulfilling all requirements

¹Stöbener et al., Fluid Phase Equilib. 373, 100, **2014**; ²Stöbener et al., Fluid Phase Equilib. 408, 141, **2016**.

Feb 23, 2017

Molecular modelling ... as an art

The art of molecular modelling

An expert modelling artist designs and publishes

- a single optimized model for a particular fluid,
- according to his choice of criteria (often unknown to the public),
- users are passive, they have to live with the artists' decision.

Paradigm shift in molecular modelling

The art of molecular modelling

An expert modelling artist designs and publishes

- a single optimized model for a particular fluid,
- according to his choice of criteria (often unknown to the public),
- users are passive, they have to live with the artists' decision.

Molecular modelling as a technology

For well-characterized model classes and multiple optimization criteria,

- the dependence of thermodynamic properties on the model parameters is determined and correlated,
- the deviation between model properties and real fluid behaviour is characterized, and the Pareto set is published,
- users can design their own tailored model with minimal effort.