

Molecular simulation and theory of homogeneous cavitation

Martin Horsch,^{1, 2} Kai Langenbach,^{1, 3} Martin Lautenschläger,^{1, 4} Hans Hasse¹

¹Laboratory of Engineering Thermodynamics, University of Kaiserslautern, ²Department of Chemical Engineering, Indian Institute of Technology Kanpur, ³Department of Chemical and Biomolecular Engineering, Rice University, ⁴Department of Mechanical Engineering, University of California, Berkeley

ProcessNet MolMod Conference Frankfurt am Main, 10th March 2017 Computational Molecular Engineering

Homogeneous liquid to vapour nucleation

Bubble formation

Carbon dioxide

MD simulation of nucleation requires large systems and performant codes.

Scalable molecular dynamics simulation

Collaboration within

IMEMO (2008 – 2011) SkaSim (2013 – 2016) TaLPas (2017 – 2020)

Bundesministerium für Bildung und Forschung

The Chemical Company

Lehrstuhl für Thermodynamik Prof. Dr.-Ing. H. Hasse

Technische Universität München

Scalable molecular dynamics simulation

• 6•

Spatial domain decomposition

Dynamic load balancing

Communication (almost) only with neighbour processes

Linked-cell data structure near-field pair potentials

Summation techniques, e.g. Janeček, FMM, for far field

large systems "1": molecular dynamics

http://www.ls1-mardyn.de/

Scalable molecular dynamics simulation

Scaling of Is1 mardyn examined on SuperMUC up to 146 016 cores.¹

¹W. Eckhardt, A. Heinecke, et al., Proceedings of ISC 2013, Springer, LNCS 7905, 1 – 12, 2013.

Scalable molecular dynamics simulation

MD simulation world record achieved for a liquid Lennard-Jones system.¹

Bubble formation in metastable liquid CO₂

Canonical MD simulation of cavitation in carbon dioxide.

Evaluation of local density at 180 x 180 x 180 grid points:

Liquid phase: More than five neighbours present within a radius of 6.9 Å around the grid point.

metastable liquid carbon dioxide

up to 100 million interaction sites

Nucleation rate from population statistics

Nucleation rate from population statistics²

Nucleation rate from population statistics

Objective: Determine the macroscopic nucleation rate *J*.

The rate of formation $J(V'' > \theta)$ from the method of Yasuoka and Matsuomoto depends on the threshold size θ .

Two types of finite-size effects are present, due to bubble size and due to system size.

Nucleation rate from population statistics

Subcritical bubbles are formed at a higher rate.

Objective: Determine the macroscopic nucleation rate *J*.

The rate of formation $J(V'' > \theta)$ from the method of Yasuoka and Matsuomoto depends on the threshold size θ .

Two types of finite-size effects are present, due to bubble size and due to system size.

For large bubbles, the rate of formation is limited by the system volume.

Comparison to classical nucleation theory

Density gradient theory

Density gradient theory + PC-SAFT EOS

Hybrid Nucleation Theory

Conclusion

Molecular modelling and simulation of **bubble formation by homogeneous nucleation** requires the efficient use of HPC resources by scalable MD simulation.

Here, *Is1 mardyn* was employed on over 100 000 cores to simulate **metastable liquid carbon dioxide** in systems containing up to 100 000 000 interaction sites.

The **classical nucleation theory** predicts an unphysical temperature dependence of the thermodynamic factor which determines the nucleation rate in the spinodal limit.

A **hybrid nucleation theory** was developed by combining density gradient theory and the PC-SAFT equation of state with MD simulation results.