Silvia Chiacchiera, Martin Horsch, Michael Seaton, and Ilian Todorov STFC Daresbury Laboratory UK Research and Innovation

VIMMP ontologies and metadata

VIMMP MVP Demo 17th October 2019

> Fraunhofer IFAM Bremen

VIMMP

VIRTUAL MATERIALS MARKETPLACE

Science & Technology Facilities Council UK Research and Innovation

Ontologies (in a nutshell)

What are they?

In philosophy, Ontology is the "science of what is".

In information science, an ontology is a formal (machine-readable) representation of knowledge within a certain domain. It identifies the categories ("classes") that exist in the domain and the relations between them.

Why are they useful?

Ontologies allow 1) automatic reasoning, 2) easier exchange of information across heterogeneous sources.

What is the bigger picture?

The context is that of semantic technologies and semantic interoperability. Notably, the Semantic Web concept, an evolution of the World Wide Web that is based on semantics rather than ad-hoc links between resources (e.g., web-pages) was proposed in the 1990s.

Taxonomies

A taxonomy is a hierarchical classification.

Simpler than an ontology, has only sub-class relations (also called "is-a" relation). For example, think of taxonomies in botanics and zoology.

In most cases, its graph structure is an acyclic tree (Aristotelic approach). However, some authors allow multiple inheritance (i.e., a class can have multiple super-classes).

Metadata

Metadata are data that provide information about other data.

For example, given a text (data) one can annotate it with a title, author, language used etc (metadata). Given a software (data) one can annotate it with a version number, programming language etc (metadata).

In general, the concepts used as metadata can be just a list, or be organized in some structure. In our case, we use concepts belonging to ontologies and taxonomies.

Triples: Individual Relation Individual. (Subject Predicate Object.)

Example

(1) Frank is_father_of Robert.

Human a Class.

Frank a Human. Robert a Human.

Cardinality restriction: Every human has exactly one father.

Principle: Open world assumption

Since relevant information may distributed over the entire semantic web, rather than the presently considered source only, the **available knowledge is assumed to be incomplete**.

(Contrast with a closed, monolothic database architechture.)

Triples: Individual Relation Individual. (Subject Predicate Object.)

Example

(1) Frank is_father_of Robert.

Q: "Is Emanuele the father of Robert?"

Human a Class.

Frank a Human. Robert a Human.

Cardinality restriction: Every human has exactly one father.

Principle: Open world assumption

Since relevant information may distributed over the entire semantic web, rather than the presently considered source only, the **available knowledge is assumed to be incomplete**.

(Contrast with a closed, monolothic database architechture.)

Principle: No unique name assumption

Unless explicitly stated, individuals with different names can coincide.

Triples: Individual Relation Individual. (Subject Predicate Object.)

Example

(1) Frank is_father_of Robert.

Q: "Is Emanuele the father of Robert?"

A: "We don't know."

Human a Class.

Frank a Human. Robert a Human.

Cardinality restriction: Every human has exactly one father.

Principle: Open world assumption

Since relevant information may distributed over the entire semantic web, rather than the presently considered source only, the **available knowledge is assumed to be incomplete**.

(Contrast with a closed, monolothic database architechture.)

Principle: No unique name assumption

Unless explicitly stated, individuals with different names can coincide.

Triples: Individual Relation Individual. (Subject Predicate Object.)

Example

- (1) Frank is_father_of Robert.
- (2) Frank is_different_from Emanuele.
- Q: "Is Emanuele the father of Robert?"
- A: "No, he is not."

Human a Class.

Frank a Human. Robert a Human.

Cardinality restriction: Every human has exactly one father.

Principle: Open world assumption

Since relevant information may distributed over the entire semantic web, rather than the presently considered source only, the **available knowledge is assumed to be incomplete**.

(Contrast with a closed, monolothic database architechture.)

Principle: No unique name assumption

Unless explicitly stated, individuals with different names can coincide.

Triples: Individual Relation Individual. (Subject Predicate Object.)

Example

- (1) Frank is_father_of Robert.
- (2) Frank is_different_from Emanuele.
- Q: "Is Emanuele the father of Robert?"
- A: "No, he is not."
- (3) Frank is_father_of Anna.
- Q: "How many children does Frank have?"

Human a Class.

Frank a Human. Robert a Human.

Cardinality restriction: Every human has exactly one father.

Anna is_different_from Robert.

"How many different entities X are there such that Frank is_father_of X?"

Triples: Individual Relation Individual. (Subject Predicate Object.)

Example

- (1) Frank is_father_of Robert.
- (2) Frank is_different_from Emanuele.
- Q: "Is Emanuele the father of Robert?"
- A: "No, he is not."
- (3) Frank is_father_of Anna.
- Q: "How many children does Frank have?"

A: "At least two."

Human a Class.

Frank a Human. Robert a Human.

Cardinality restriction: Every human has exactly one father.

Anna is_different_from Robert.

"How many different entities X are there such that Frank is_father_of X?"

Open world assumption: More information could be available elsewhere.

Ontologies on the marketplace

How do we use them in a marketplace?

They cover all aspects of the marketplace. At the user interface, for the data ingest (i.e., to create entries about agents, products, services) and to guide search and browsing. Internally, they are the base of interoperability of the marketplace compontents.

How will this help/affect users and providers?

Ontologies define the "common language" used in the marketplace. Users will indirectly see them via the available keywords and search criteria and results (e.g., as when you search a movie on Netflix).

This vocabulary will not be frozen: there will be a policy to allow users/providers to request the addition of categories or to integrate sub-domain specific ontologies.

Providers can choose down to which level of detail to adhere to the proposed common language: the deeper the adherence, the deeper the interoperability with other services.

Ontology development on the basis of the EMMO

Types of relations covered by the European Materials & Modelling Ontology (EMMO)

ELECTRONS 1) Taxonomy: Subclass relation (between classes) electronic 2) Semiosis: Representation of *physical* entities by *signs* 3) Mereotopology: Parthood (of a part in a *fusion*) and slicing ATOMS atomistic 4) Set theory: Membership (of an element in a set) object BEADS mesoscopic CONTINUUM OLUME ELEMENT continuum

C. S. Peirce

Science & Technology

acilities Council

UK Research

sign

and Innovation

11 | 17th October 2019

interpretant

Ontology development on the basis of the EMMO

Types of relations

- 1) Taxonomy: Subclass relation
- 2) Semiosis: Representation by signs
- 3) Mereotopology: Parthood and slicing
- 4) Set theory: Membership

Branches and important classes from EMMO

- 1) "material"
- **3)** "quantitative property"
- 5) "qualitative property"

- 2) "process"
- 4) "model"
- 6) "semiotic"

Ontology development on the basis of the EMMO

MODA Graph Language, CEN Workshop Agreement 17284, and EMMO (Ghedini et al.)

- Upper level: EMMO extended by European Virtual Marketplace Ontology (EVMPO)
- Marketplace-level ontologies: VIMMP in coordination with the MarketPlace project
- Subdomains: VOV, VISO branches (electronic, atomistic-mesoscopic, continuum)

European Virtual Marketplace Ontology

The EVMPO provides a structure for the marketplace-level ontologies by formulating **fundamental paradigmatic categories** that correspond to irreducible terms which are seen as constitutive to the virtual-marketplace paradigm.

Recommendation: Any ontology at the marketplace level should follow the structure given by these categories as closely as possible.

Fundamental paradigmatic categories:

- (1) **assessment**, i.e., proposition on accuracy, performance of an entity, or of an entity's trust in another entity
- (2) **calendar_event**, i.e., meeting or activity that is scheduled or can be scheduled, equivalent to Vevent from ICALTZD
- (3) **communication**, i.e., statement or sequence of statements that can be communicated at a virtual marketplace
- (4) **information_content_entity** as defined in the Information Artifact Ontology (IAO)
- (5) **infrastructure**, i.e., virtual-marketplace infrastructure (e.g., data access, hardware, and software)
- (6) **material** as defined in the European Materials Modelling Ontology (EMMO)
- (7) **model**, i.e., entity that can be described by the 2nd section of MODA, equivalent to "model" from the EMMO
- (8) process, i.e., temporal evolution of one or multiple entities note: physical_process is a subclass of EMMO "process"
- (9) **product**, i.e., good or service that can be offered either at a virtual marketplace or off-site
- (10) property as defined in the EMMO
- (11) role as defined in the EMMO
- (12) **simulation**, i.e., a simulation workflow (as in MODA)

- 1) Review of Materials Modelling (RoMM)
- 2) CWA 17284 Model Data (MODA)
- 3) European Materials & Modelling Ontology (EMMO)

Blue: Semantic assets co-developed by VIMMP

VISO – VImmp Software Ontology

VISO's main purpose is to describe software, addressing mostly its capabilities (both model and solver aspects), but also licensing, requirements (as libraries and operating systems) and compatibility^[1] with other tools.

It will be used to structure the ingestion of information about software tools on the virtual marketplace. The same keywords will be then available to the users to browse the tools and compare them.

[1] Following E. Ghedini (EMMC), we distinguish between compatibility and interoperability, namely:

compatibility (=ability to exchange information directly, no need to interface) **interoperability** (=ability to exchange information through a common language) Categories at the upper level:

(1) **agent** = An entity (individual, group, institution) that can potentially act on a virtual marketplace

(2) **software** = A computer program. Can be a software tool, a compiler, or an operating system.

(3) **license** = Regulation of the right to use, modify and distribute something, in this case software.

(4) **programming_language** = A language that can be used to write software.

(5) **solver_feature** = Capability of a software tool, intended as a numerical algorithm which is implemented.

(6) **model_feature** = Capability of a software tool, intended as a model aspect that can be addressed.

(7) **modelling_related_entity** = High level concept related to modelling, as statistical mechanics, the RoMM models, fundamental physics equation, etc.

(8) property = A feature that can be measured or computed

(9) **software_update** = Allows to describe the differences between two softwares. It has input/output the older/newer version of the software

(10) **software_interface** = Interface between a software and a user or a client (i.e., a program or device)

16

VISO (2): The structure

Below an upper level (viso-general) that addresses aspects common to all software, we split VISO into three branches, i.e., electronic (EL, viso-el), atomistic-mesoscopic (AM, viso-am) for the two molecular granularity levels from RoMM, and continuum (CO, viso-co).

The model_feature class has typically a rich structure, so we further subdivide it into three classes. As an example, we show here the am_model_feature class and its subclasses.

VISO was designed having in mind Molecular Dynamics (**MD**), Dissipative Particle Dynamics (**DPD**), Quantum Density Functional Theory (**DFT**) and Computational Fluid Dynamics (**CFD**) models and tools.

UK Research and Innovation

| 17th October 2019

VISO (3): Solver features

Here, we show instead the solver_feature class and its subclasses, for the three branches.

This includes, for example, concepts as: geometric_constraint_algorithm, electrostatics_solver, integrator (in AM), ionic_relaxation, basis_set (in EL), spatial_discretization_scheme (in CO).

Main contributors of VISO:

Science & Technology

Facilities Council

Silvia Chiacchiera, Martin T. Horsch Mara Chiricotto, Joshua D. Elliott (UoM) Gianluca Boccardo (PoliTO)

UK Research

and Innovation

18

VISO (4): Relations and an example

The main relations between objects in VISO are:

has_feature = To describe the features of a software
tool [Inverse: is_feature_of]

is_tool_for_model = Relates software tools and RoMM models

is_compatible_with = Asserts compatibility between
software tools

is_distributed_by = Relates tools and agents
[Inverse: is_distributor_of]

has_license = Relates software and license

requires = Relates a software tool to libraries and/or operating systems

can_run_on = Relates a software tool to operating
systems

Some relations between objects and literals are:

is_free, is_open_source, is_a_library, has_a_gui

Example for a software tool (extract from a .TTL file):

ex:DL POLY a viso:software tool; viso:is free false; viso: is free to academic true; viso:has a qui true; viso:is open source true; viso: is a library false; viso:is distributed by ex:STFC; rdfs:seeAlso "https://www.scd.stfc.ac.uk/Pages/DL POLY.aspx"^^xs:anyURI; viso:is tool for model viso-am:MM; viso: is tool for model viso-am:MD; viso:has feature viso-am:DOMAIN DECOMPOSITION; viso:has feature viso-am:DIRECT COULOMB SUM; viso:has feature viso-am:SPME; viso:uses language viso:FORTRAN90; viso:has feature viso-am:NVE; viso:has feature viso-am:NVT; viso:has feature viso-am:NPT; viso:has feature viso-am:LENNARD JONES 12 6; viso:has feature viso-am:RIGID BOND; viso:has feature viso-am:VV: viso:has feature viso-am:LFV; viso: is compatible with ex:PLUMED; viso: is compatible with ex:OPENKIM; a viso:simulation engine.

VOV – Vimmp Ontology of Variables

The purpose of VOV is to **organize the variables** (in broad sense, including constants) that appear in modeling and simulations, **and to connect them to models and algorithms in which they are involved and to model objects** (e.g., entities entering a simulations, such as sites, rigid bodies) **to which they are attached**.

VOV is to be used in connection to VISO and OSMO, to further specify models, algorithms and workflows.

See the examples on the right.

= involves

individual

= has_attached_variable

17th October 2019

class

Ontology use during data ingest

Expert competency description: "The expert X_1 can (accomplish) X_2 with respect to topic X_3 by doing X_4 ; for example, X_5 ." (Note: X_4 and X_5 are not required.)

mm_topic_basic (codes 1XXX and 2XXX): Basic prerequisites for materials modelling									
mm_topic_computational (codes 3XXX):									
Computational and numerical aspects of materials modelling.									
mm_topic_data (codes 4XXX):		6120 chemical							
Data science and technology aspects.	6140 automotive, aerospace, etc. 6150 biotechnology 6155 food								
mm_topic_materials (codes 5XXX):									
Topics related to fluid and solid materials.									
mm_topic_social (codes 6XXX):	under 61XX: industrial	6160 medicine							
Social, economic, and community aspects.		6165 paper							
mm_topic_theoretical (codes 7XXX):	6170 electrical 6175 machinery 6180 metal (basic and fabricated) 6190 special topics								
Theory (non-computational aspects).									
mm_topic_interdisciplinary (codes 8XXX)									
mm_topic_side (codes 9XXX):									
Topics from other disciplines									

4XX – Operators for expert competencies: "to review/evaluate critically" (code 420), "to advise/manage" (code 425), "to characterize experimentally" (code 430), "to document" (code 435), "to carry out professionally" (code 440), "to correspond" (code 445), "to teach" (code 450), ..., "to innovate/develop" (code 480).

Science & Technology Facilities Council

Ontology use during data ingest

UK Research

and Innovation

Science & Technology Facilities Council

Expert competency description: "The expert X ₁ c	an (accomplish) X₂ with respect
Speak to our experts at no cost	e: X₄ and X₅ are not required.)
mm_tc mm_tc mm_tc mm_tc mm_tc	6120 chemical 6140 automotive, aerospace, etc. 6150 biotechnology 6155 food
mm_tc	trial 6160 medicine
mm_tc	6165 paper
mm_tc	6170 electrical
mm_tc	6175 machinery
mm_tc	6180 metal (basic and fabricated)
mm_tc	6190 special topics
4XX Continue (code 445), "to teach" (code 450),, "to innov	v/evaluate critically" (code 420), "to xperimentally" (code 430), "to ally" (code 440), "to correspond" ate/develop" (code 480).

24

17th October 2019

VIRTUAL MATERIALS

Ontology use within the virtual marketplace framework

Virtual-marketplace stakeholder communication is formalized by VICO, taking into account specific requirements related to assessment and validation (VIVO) and translation.

VIMMP Validation Ontology (VIVO) Assessment Matrix

		absolute	relative	qualitative	(computing) time	space (memory)	other	endorsement	comment	revision
			accuracy			requirement			review	
	agent		-			-		+		
	data item		+			-			+	
	document			+		-		+		
	event		-				+	+		
data				+		+	+	+		
hardware	infrastructure						+	+		
software						+	+	+		
	meta-assessment		-			-			+	
	model		+				+		+	
	project		-				+	+		
data access										
hardware access	service									
software access										
training			-			-		+		
translation										
other										
	workflow		+			+			+	

UK Research and Innovation

Ontology use within the virtual marketplace framework

Ontology use within the virtual marketplace framework

UK Research and Innovation

28 | 17th October 2019

Semantic and pragmatic interoperability

Science & Technology Facilities Council UK Research and Innovation

29 | 17th October 2019

Semantic and pragmatic interoperability

Interoperability and data provenance

Ontology use for data provenance characterization

UK Research and Innovation

32

17th October 2019

Ontology use for data provenance characterization

UK Research and Innovation

UK Research and Innovation

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 760907.

This document and all information contained herein is the sole property of the VIMMP Consortium (unless specified otherwise or clear by context). Information presented herein may be subject to intellectual property rights. No intellectual property rights are granted by the delivery of this document or the disclosure of its content. Reproduction or circulation of this document to any third party is prohibited without the consent of the authors.

The statements made herein do not necessarily have the consent or agreement of the VIMMP Consortium. They represent the opinion and findings of the authors.

©2019 all rights reserved.