M. T. Horsch, S. Chiacchiera, M. A. Seaton, I. T. Todorov, UK Research and Innovation, B. Schembera, High Performance Computing Center Stuttgart, P. Klein, Fraunhofer ITWM, N. A. Konchakova, Helmholtz-Zentrum Geesthacht

> Pragmatic interoperability and translation of industrial engineering problems into modelling and simulation solutions

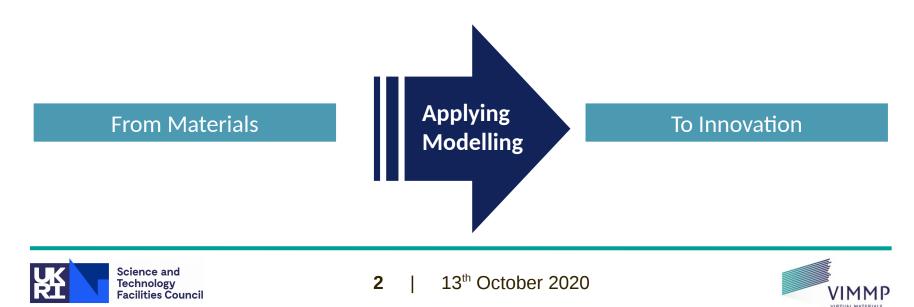
VIMMP VIRTUAL MATERIALS

MARKETPLACE

13th October 2020 **DAMDID 2020**

Science and Technology Facilities Council

Virtual Materials Marketplace (VIMMP)



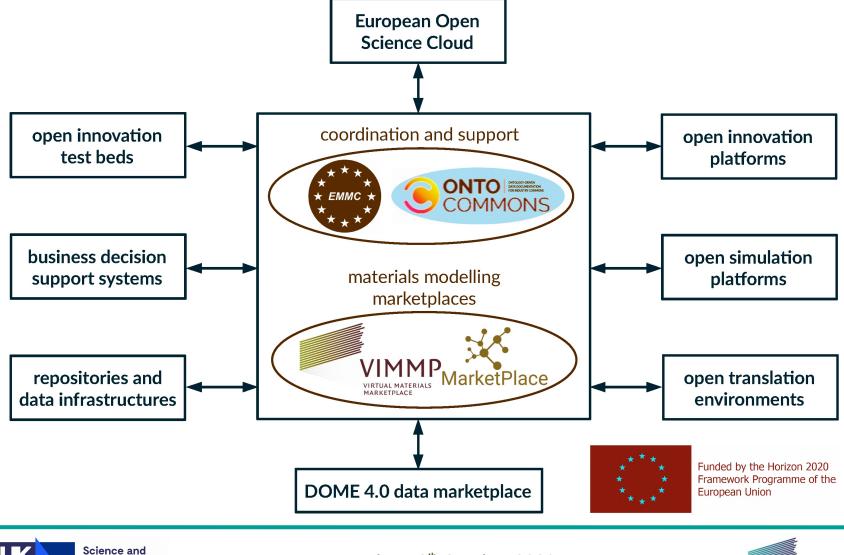
- Horizon 2020 project
 - Innovation action, grant agreement no. 760907

ARKETPLACI

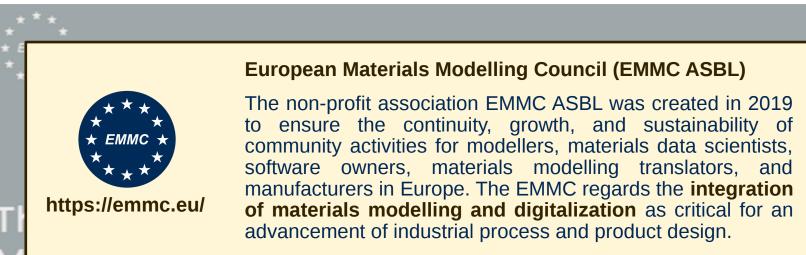
- H2020 (NMBP-25-2017)
- 4 years project started on 01.01.2018

To support accelerating innovation in manufacturing industries by using materials modelling solutions.

Virtual Materials Marketplace (VIMMP)


- Horizon 2020 project
 - Innovation action, grant agreement no. 760907
 - H2020 (NMBP-25-2017)
 - 4 years project started on 01.01.2018

European digital platforms in materials modelling



Technology

Facilities Council

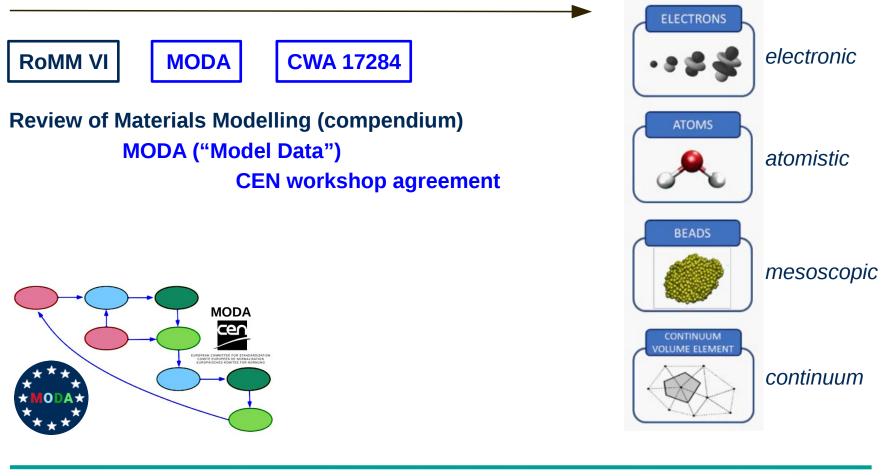
European Materials Modelling Council

Materials modelling Counci

The non-profit Association, EMMC ASBL, was created in 2019 to

EMMC Focus Area on Digitalization

In computational engineering, digitalization encompasses aspects of representing, managing, accessing, and utilizing digital information about products, components, materials, their behaviour, and their processing.

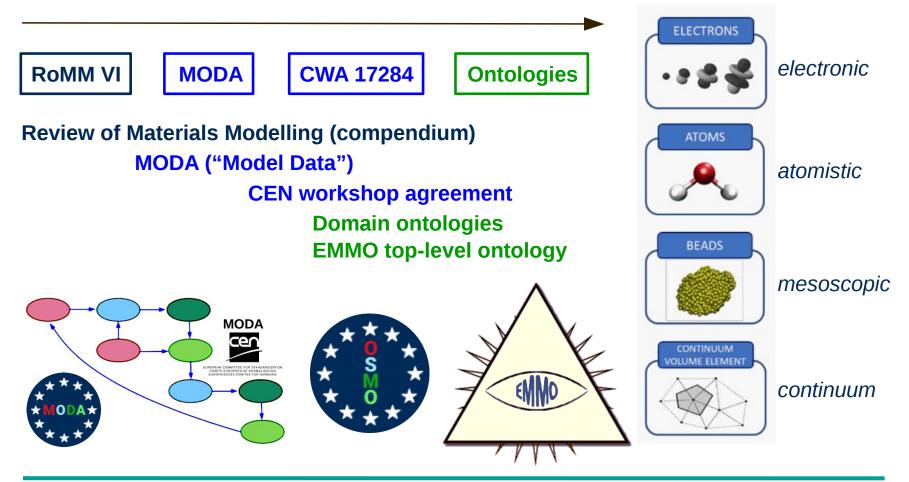


Knowledge representation in materials modelling

Community-governed development of metadata standards

Science and

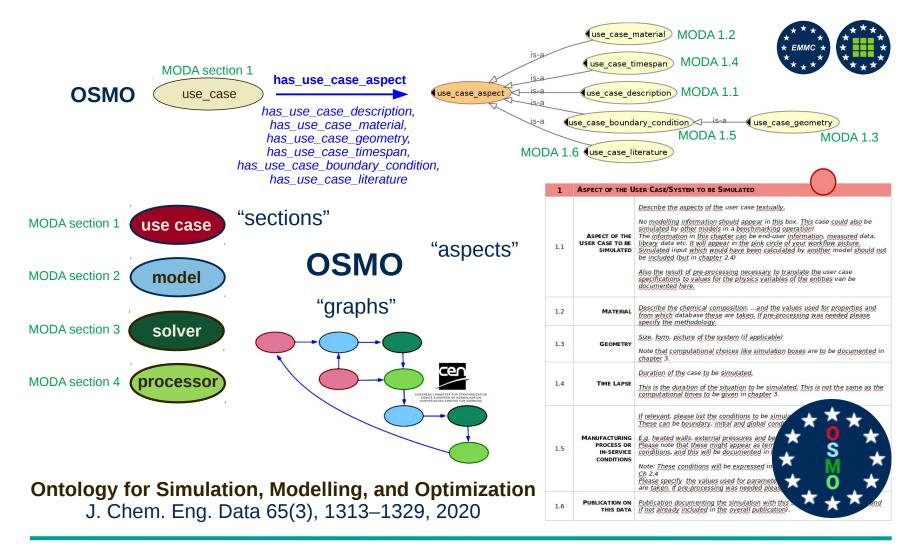
Technology Facilities Council


13th October 2020

6

Knowledge representation in materials modelling

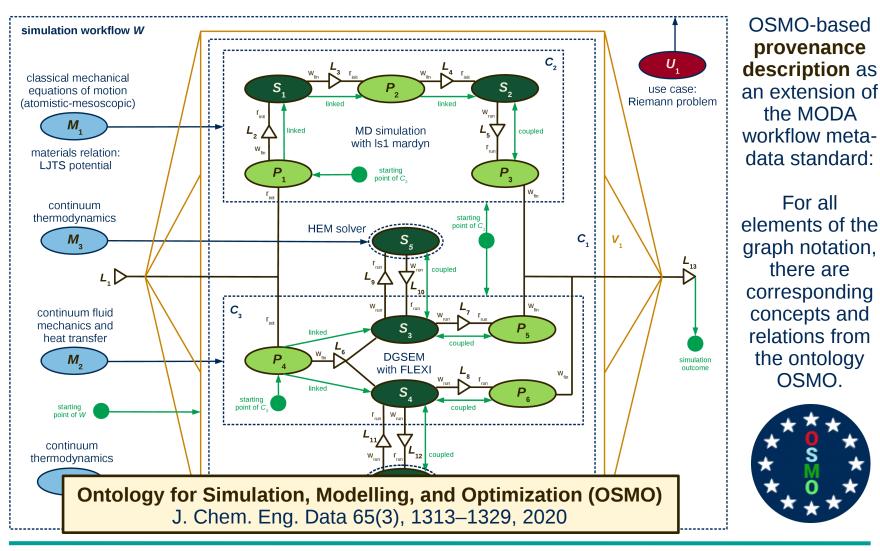
Community-governed development of metadata standards


Provenance description of simulation results: MODA

1	ASPECT OF THE U	SER CASE/SYSTEM TO BE SIMULATED	MODA workflow description
1.1	ASPECT OF THE USER CASE TO BE SIMULATED	Describe the aspects of the user case textually. No modelling information should appear in this box. This case could also be simulated by other models in a benchmarking operation! The information in this chapter can be end-user information, measured data, library data etc. It will appear in the pink circle of your workflow picture. Simulated input which would have been calculated by another model should not be included (but in chapter 2.4) Also the result of pre-processing necessary to translate the user case specifications to values for the physics variables of the entities van be documented here.	WODA WORKHOW description
1.2	MATERIAL	Describe the chemical composition, and the values used for properties and from which database these are taken. If pre-processing was needed please specify the methodology.	
1.3	GEOMETRY	Size, form, picture of the system (if applicable) Note that computational choices like simulation boxes are to be documented in chapter 3.	* EMMC * * * *
1.4	TIME LAPSE	Duration of the case to be simulated. This is the duration of the situation to be simulated. This is not the same as the computational times to be given in chapter 3.	MODA section 1 use case
1.5	MANUFACTURING PROCESS OR IN-SERVICE CONDITIONS	If relevant, please list the conditions to be simulated (if applicable). These can be boundary, initial and global conditions. E.g. heated walls, external pressures and bending forces, I Please note that these might appear as terms in the PE or as boundary conditions, and this will be documented in the relevant chapters. Note: These conditions will be expressed in physics relations in Ch 2.4 Please specify the values used for parameters and from which database these are taken. If pre-processing was needed please specify the methodology.	MODA section 2 model MODA section 3 solver
1.6	PUBLICATION ON THIS DATA	Publication documenting the simulation with this single model (if available and if not already included in the overall publication).	MODA section 4 processor

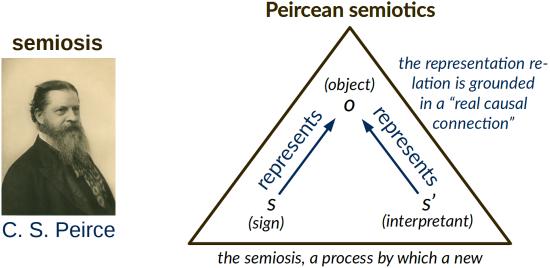
Provenance description of simulation results: OSMO

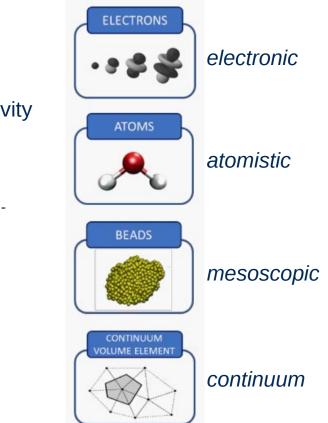
Provenance description of simulation results: OSMO


electronic	••*	LL.I. / to infine of the second	EL.4: Charge transport (statistical) EL.5: Spin transport (statistical) a quantities and fields
atomistic		A.I. Classical Di ((alcinitation)	A.4: Partition function (atomistic) A.5: Atomistic spin models A.6: Statistical transport (atomistic)
mesoscopic		M.1: Classical DFT (mesoscopic) M.2: Molecular statics (mesoscopic) M.3: Equations of motion (mesosc.)	M.4: Partition function (mesoscopic) M.5: Mesoscopic spin models M.6: Statistical transport (mesosc.)
continuum		CO.1: Continuum solid mechanics CO.2: Continuum fluid mechanics CO.3: Heat transfer, thermomechanics CO.4: Phase field models, DGT	CO.5: Continuum thermodynamics CO.6: Chemical reaction kinetics CO.7: Electromagnetism CO.8: Processes and devices

Ontology for Simulation, Modelling, and Optimization J. Chem. Eng. Data 65(3), 1313–1329, 2020

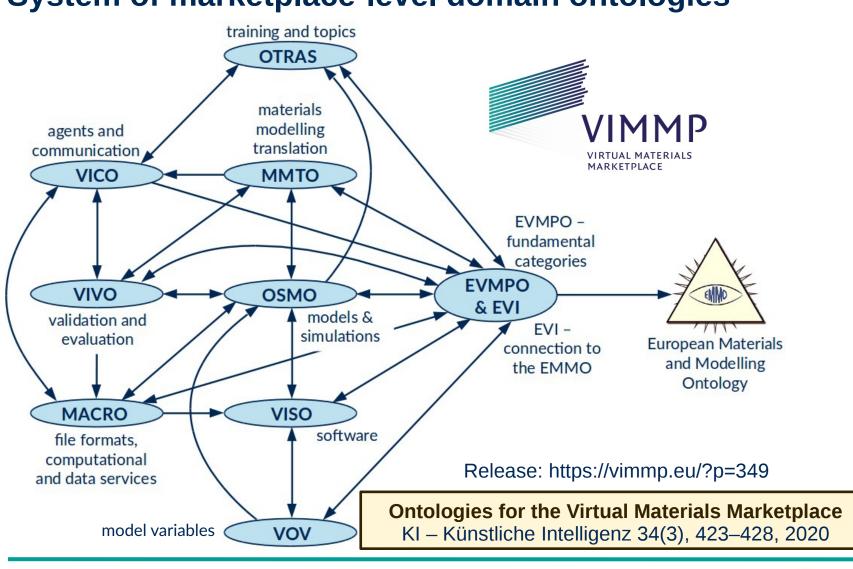
Provenance description of simulation results: OSMO



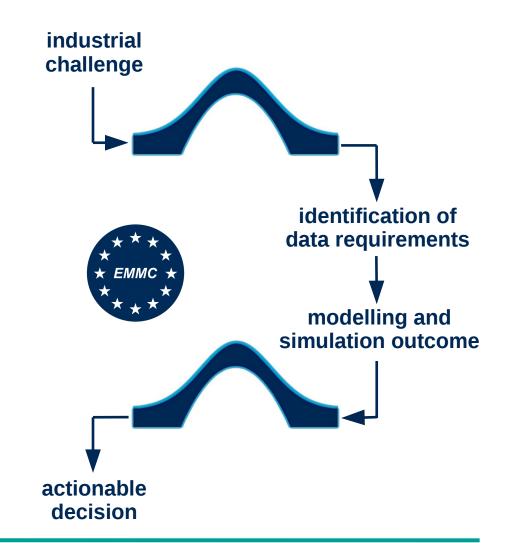

Community-governed top-level interoperability layer

Relations covered by the European Materials and Modelling Ontology¹ (EMMO)

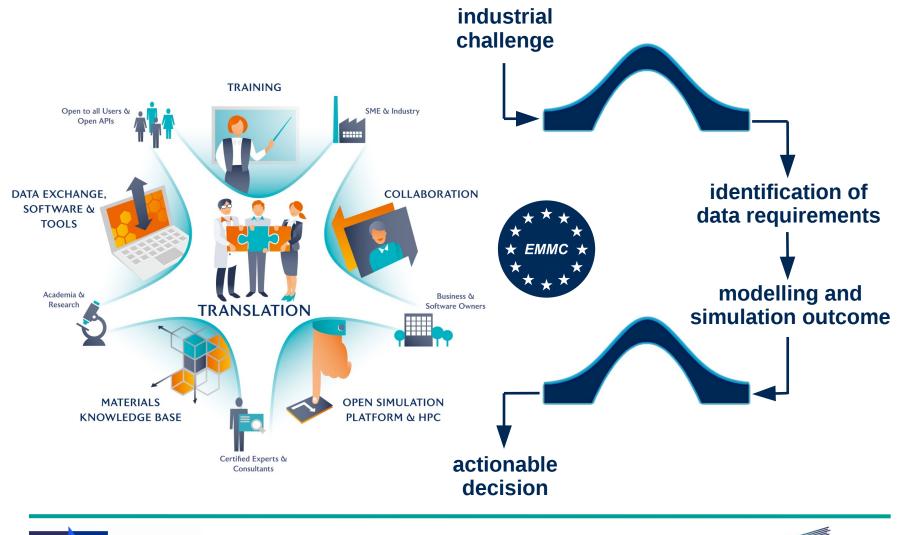
Taxonomy: Conceptual hierarchy (subclass relation)
 Semiotics: Representation of physical entities by signs
 Mereotopology: Spatiotemporal parthood and connectivity


the semiosis, a process by which a new representamen, the interpretant, is created

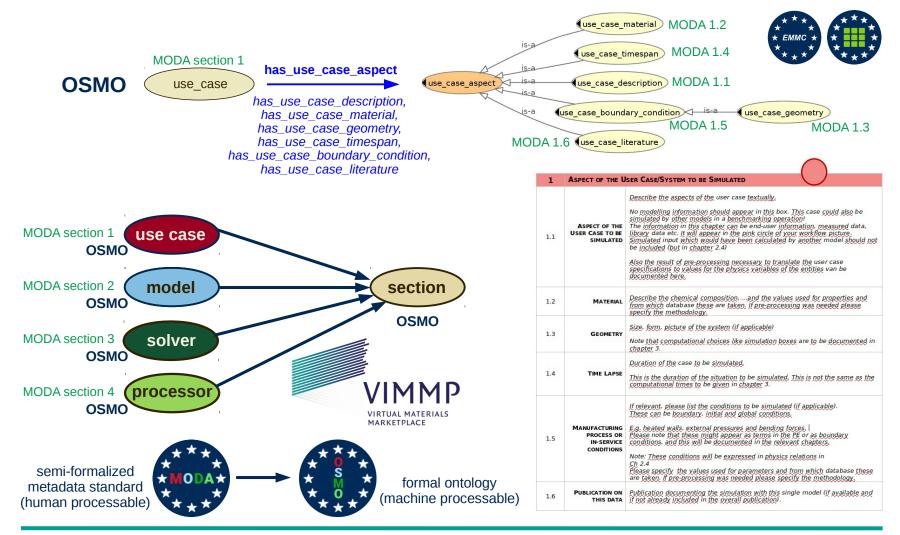
¹E. Ghedini, J. Friis, A. Hashibon, G. J. Schmitz, G. Goldbeck, et al., **2020**; <u>http://emmc.info/emmo-info/</u>.


System of marketplace-level domain ontologies

Translation in materials modelling

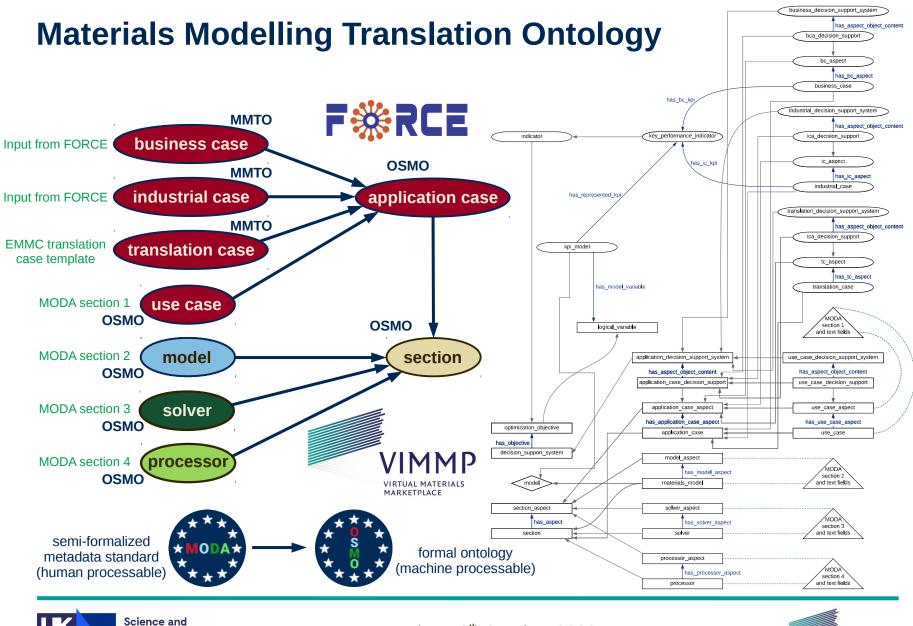

Task: Facilitate the translation of industrial R&D challenges into solutions using scalable and quantitatively reliable materials modelling and simulation.

Translation in materials modelling

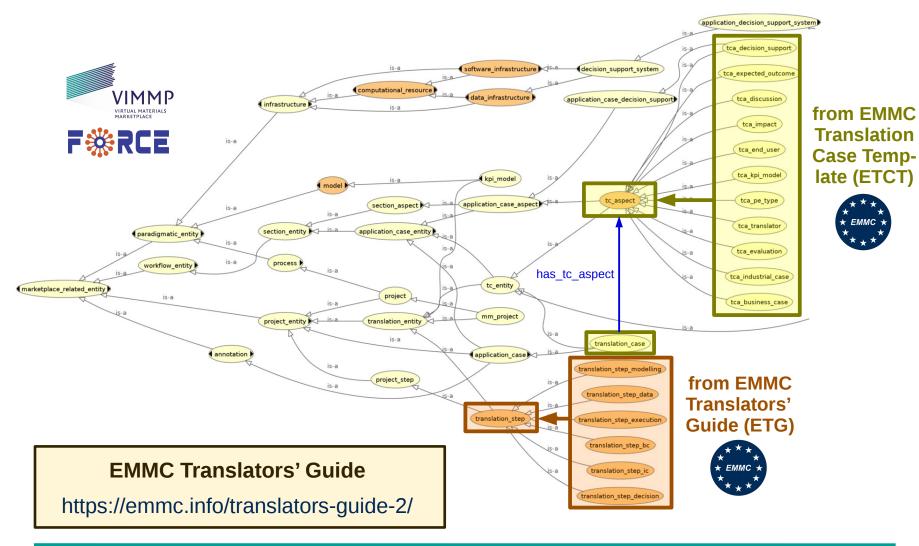


Science and Technology Facilities Council

15 | 13th October 2020



Ontologization of EMMC metadata standards



Technology Facilities Council

Materials Modelling Translation Ontology

VIMMP ontology-based translation router

<pre>mm_topic_basic (codes 1XXX and 2XXX): Basic prerequisites for materials mode mm_topic_computational (codes 3XXX): Computational and numerical aspects mm_topic_data (codes 4XXX): Data science and technology aspects. mm_topic_materials (codes 5XXX): Topics related to fluid and solid materia mm_topic_social (codes 6XXX): Social, economic, and community aspects mm_topic_theoretical (codes 7XXX): Theory (non-computational aspects). mm_topic_side (codes 9XXX): Topics from other disciplines. </pre>	of materials modelling.	 3100, 7100 electronic 3120, 7120 physical equation EL.1 3130, 7130 physical equation EL.2 etc. 3200, 7200 atomistic and mesoscopic 3220, 7220 equations A.1 and M.1 3222, 7222 physical equation A.1 3225, 7225 physical equation M.1 3230, 7230 equations A.2 and M.2 etc. etc. 3300, 7300 continuum 3320, 7320 physical equation CO.1 3330, 7330 physical equation CO.2 etc.
Which class of model?	electronic	EL.1: Ab-initio quantum mechanics EL.4: Charge transport (statistical) EL.2: Effective Hamiltonian models EL.5: Spin transport (statistical) EL.3: QM modelling of time-dependent quantities and fields
(***) ***	atomistic	A.1: Classical DFT (atomistic) A.4: Partition function (atomistic) A.2: Molecular statics (atomistic) A.5: Atomistic spin models A.3: Equations of motion (atomistic) A.6: Statistical transport (atomistic)
Electronic Atomistic	mesoscopic	M.1: Classical DFT (mesoscopic) M.4: Partition function (mesoscopic) M.2: Molecular statics (mesoscopic) M.5: Mesoscopic spin models M.3: Equations of motion (mesosc.) M.6: Statistical transport (mesosc.)
Mesoscopic Continuum	continuum	CO.1: Continuum solid mechanics CO.2: Continuum fluid mechanics CO.3: Heat transfer, thermomechanics CO.4: Phase field models, DGT CO.8: Processes and devices
I don't know		

VIRTUAL MATERIALS MARKETPLACE

VIMMP ontology-based translation router

mm_topic_basic (codes 1XXX and a Basic prerequisites for mat		
mm_topic_computational (codes 3	6120 chemical	
Computational and numerio	6130 petrochemical	
mm_topic_data (codes 4XXX):		
Data science and technolo	6140 transport	
mm_topic_materials (codes 5XXX)	- 6142 aerospace	
Topics related to fluid and s	solid materials	 – 6144 automotive
mm_topic_social (codes 6XXX):	under 61XX: industrial	– 6148 railway
Social, economic, and com	munity aspects.	6150 biotechnology
mm_topic_theoretical (codes 7XXX		6155 food
Theory (non-computational		6160 medicine
mm_topic_interdisciplinary (codes	• •	6165 paper
mm_topic_side (codes 9XXX):	- /	6170 electrical
Topics from other discipline	es.	6175 machinery
		6180 metal (basic and fabricated)
Speak to our experts at no cost	Speak to our experts at no cost	6190 special topics
Which class of model?	Which business area are you from?	
Electronic Atomistic	✓ Automotive/Aerospace Chemical industry Bio ✓ Manufacturing Medical Other	
Mesoscopic Continuum	Continue	
I don't know		

VIMMP ontology-based translation router

	5100 general			
mm_topic_basic (codes 1XXX and 2X	5200 fluid			
Basic prerequisites for mater	5300 bio			
mm_topic_computational (codes 3X)	5350 ceramic			
•	l aspects of materials modelling.	5400 composite		
mm_topic_data (codes 4XXX):		5450 electrolyte		
Data science and technology	aspects.	5500 metal		
mm_topic_materials (codes 5XXX):		5550 mineral		
Topics related to fluid and so	lid materials.			
mm_topic_social (codes 6XXX):		5600 nano		
Social, economic, and comm	unity aspects.	5650 organic		
<pre>mm_topic_theoretical (codes 7XXX):</pre>		5700 polymer		
Theory (non-computational a	. ,	5750 semiconductor		
mm_topic_interdisciplinary (codes 8	XXX)	5800 ultracold		
mm_topic_side (codes 9XXX):		5850 unstable		
Topics from other disciplines.		5900 special topics		
Speak to our experts at no cost	Speak to our experts at no cost	Speak to our experts at no cost		
Which class of model?	Which business area are you from?	Which material class are you interested in?		
Electronic Atomistic	Automotive/Aerospace Chemical industry Bio Weical Medical Other	Metal Composites Polymer Other		
\$\$\$ \$		Ceramic		
Mesoscopic Continuum	Continue			
l don't know		Continue		

Data management on the VIMMP back end

Lifecycle Status \Upsilon 👻	Expertise in the Materials 🝸 👻	fluid Q	Add Filter 👻	
Q Sort By 👻	Search Q			
About 10 results	✓ 5200 fluid			\$
Lifecycle Status	✓ 5450 electrolyte	Created On	Information Package Profile	Expertise in the Materials
Submitted	5300 bio	2020/May/04 11:22:43 (+01:00)	Translator	5700 polymer, 5400 composite,
Submitted	5350 ceramic	2020/May/04 11:25:27 (+01:00)	Translator	5200 fluid, 5450 electrolyte, 56.
Submitted	5400 composite	2020/May/04 11:43:13 (+01:00)	Translator	5700 polymer, 5200 fluid, 5450.
Submitted	Gaetano D'Avino	2020/May/04 11:33:29 (+01:00)	Translator	5200 fluid, 5500 metal, 5650 o
Submitted	Jan-Willem Handgraaf	2020/May/04 11:38:11 (+01:00)	Translator	5700 polymer, 5200 fluid, 5450.

							@hasDocumentTopic		
-	Property Na	Preferred La	Definition	Property Type	Default Group	Deactivated		0	
Î	@hasCitedB	ISBN		Text	VIMMP Pro	no		0	
Î	@hasCitedB	Number of		Integer	VIMMP Pro	no	Property Name	@hasDocumentTopic	
î	@hasCitedci	Video durati		Integer	VIMMP Pro	no	Property Type	Code List	
î	@hasCitedPr	Number of s		Integer	VIMMP Pro	no	Preferred Label	Topic (codes)	
î	@hasCodeList	CodeList	CodeList pro	Code List	Custom Pro	no	Definition		
Î	@hasDocu	Topic (codes)		Code List	VIMMP Pro	no	Path	http://purl.vimmp.eu/ontologies/otras /otras.ttl#has_document_topic	
i	@hasExtern	External URL		Link	VIMMP Pro	no	Default Group	VIMMP Properties	
î	@hasFeature	Feature		Code List	VIMMP Soft	no	Information Package Property	yes	

22

13th October 2020

The present work is a collaboration of UKRI STFC Daresbury Laboratory with:

Geesthacht	-	Natalia A. Konchakova
Kaiserslautern	-	Peter Klein
Stuttgart	_	Björn Schembera

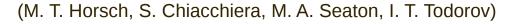
This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no. 760907.

This document and all information contained herein is the property of the VIMMP Consortium (unless specified otherwise or clear by context). Information presented herein may be subject to intellectual property rights. No intellectual property rights are granted by the delivery of this document or the disclosure of its content. Reproduction or circulation of this document to any third party is prohibited without the consent of the authors.

The statements made herein do not necessarily have the consent or agreement of the VIMMP Consortium. They represent the opinion and findings of the authors.

©2020 all rights reserved.

(M. T. Horsch, S. Chiacchiera, M. A. Seaton, I. T. Todorov)


The present work is a collaboration of UKRI STFC Daresbury Laboratory with:

©2020 all rights reserved.

Science and

Technology Facilities Council

