Silvia Chiacchiera, Martin T. Horsch, Michael A. Seaton, Ilian Todorov **STFC Daresbury Laboratory** UK Research and Innovation

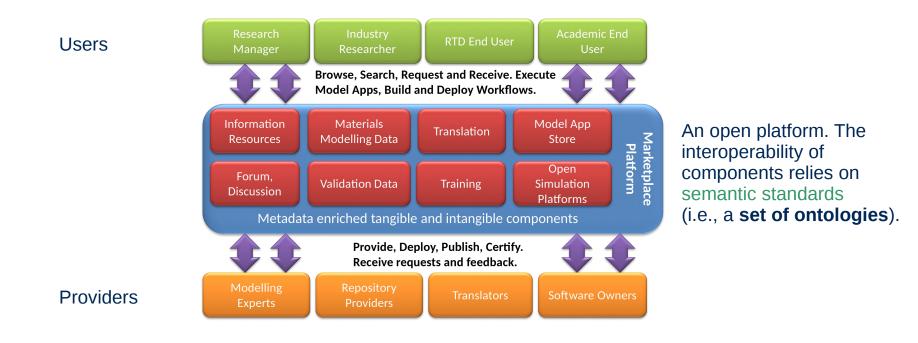
Digitalization in materials modelling: The Virtual Materials Marketplace

ReaxPro Conference

10th July 2020

Science and Technology Facilities Council

VIMMP


VIRTUAL MATERIALS

MARKETPLACE

VIMMP – Virtual Materials Marketplace

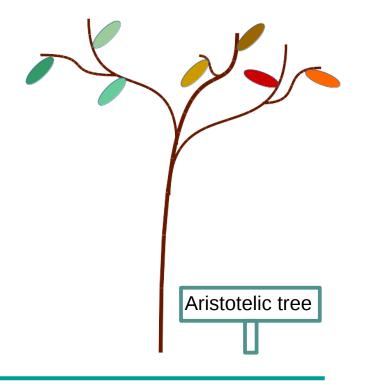
VIMMP and **MarketPlace** are sibling H2020 projects^[1] developing digital marketplaces, i.e., platforms to facilitate exchanges between providers and users in the area of materials modelling. Below, we show a graphical summary of the VIMMP concept.

[1] The projects sites are: https://www.vimmp.eu/ and https://www.the-marketplace-project.eu/

2 | 10th July 2020

Standardization: a spectrum of possibilities

Standards can be intended for humans or for machines. Can be at syntactic, semantic or pragmatic levels. Moreover, the semantic spectrum goes from (unstructured) vocabularies, via taxonomies, to ontologies.


Standards undoubtly support interoperability. However, different design choices can be made:

• Less expressive languages (e.g., XML-based):

PRO: can be handled with multiple technologies/tools; typically lighter and faster. CONTRA: limited expressivity.

• Richer languages (e.g., OWL):

PRO: can describe more complex relations. CONTRA: rely on less widespread technologies; typically heavier to handle.

IDTIIAL MATERIALS

Standardization (2): recent efforts in materials modelling

Our work connects to community-guided assets:

MODA – MOdelling DAta → A template to describe simulation workflows

(user case, model, solver, processor); CWA 17284.

RoMM – Review of Materials Modelling *What makes a material function? Let me compute the ways...*, Anne F. de Baas (ed), 6th version, 2017.

 \rightarrow Includes a classification of models according to their granularity (electronic, atomistic, mesoscopic, continuum)

EMMO – European Materials & Modelling Ontology E. Ghedini *et al*, 2020; https://github.com/emmo-repo/EMMO .

 \rightarrow A top-level ontology for applied sciences

Ontologies (in a nutshell)

What are they?

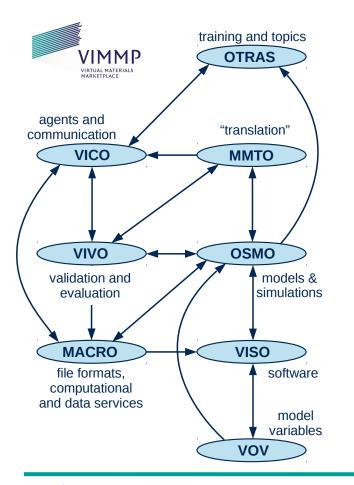
In philosophy, Ontology is the "science of what is".

In information science, an ontology is a formal (machine-readable) representation of knowledge within a certain domain. It identifies the categories ("classes") that exist in the domain and the relations between them.

Why are they useful?

Ontologies allow 1) automatic reasoning, 2) easier exchange of information across heterogeneous sources.

What is the bigger picture?


The context is that of semantic technologies and semantic interoperability. Notably, the Semantic Web concept, an evolution of the World Wide Web that is based on semantics rather than ad-hoc links between resources (e.g., web-pages) was proposed in the 1990s.

Ontologies on the VIMMP marketplace

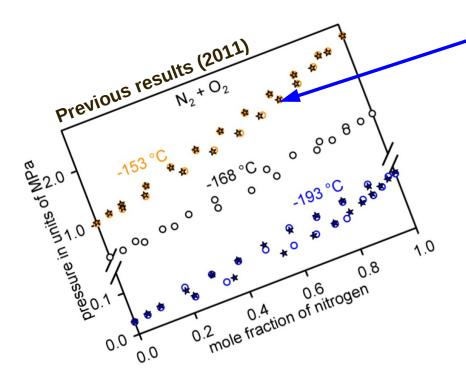
In VIMMP we have developed a set of 8 ontologies, covering all aspects of the marketplace.

How do we use them?

To guide data ingest, then search and browsing. Internally, they are the base of interoperability of the marketplace compontents.

How will this help/affect users and providers?

Users will indirectly see them via the available keywords and search criteria and results.

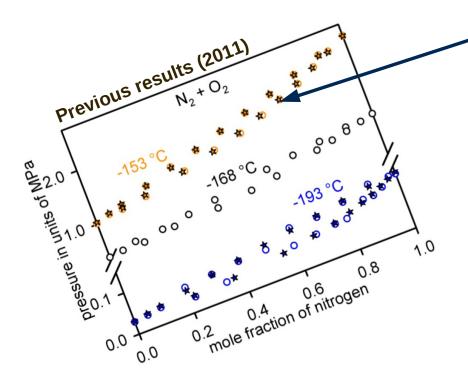

They will not be frozen, there will be a policy to allow users/providers to request for extensions.

Providers can choose down to which level of detail to adhere to the proposed common language: the deeper the adherence, the deeper the interoperability with other services.

Provenance description of thermophysical data

What values did x and p have?

How was the data point obtained?

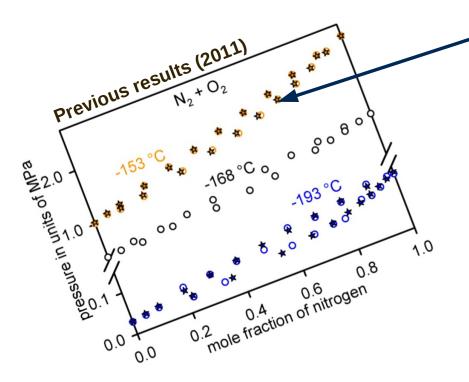

What is the margin of error, how was the error defined, and what software (or experimental setup) was used?

> ask the person who carried out the work back in 2011

Provenance description of thermophysical data

What values did x and p have?

How was the data point obtained?


What is the margin of error, how was the error defined, and what software (or experimental setup) was used?

> ask the person who carried out the work back in 2011

Provenance description of thermophysical data

Good practice in handling research data:

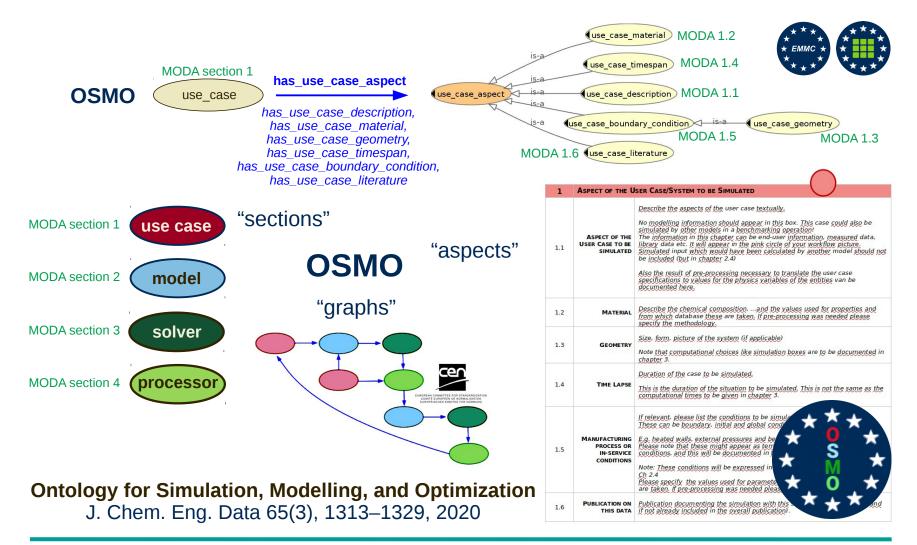
Keep all data findable, accessible, interoperable, and reusable (FAIR).

What values did x and p have?

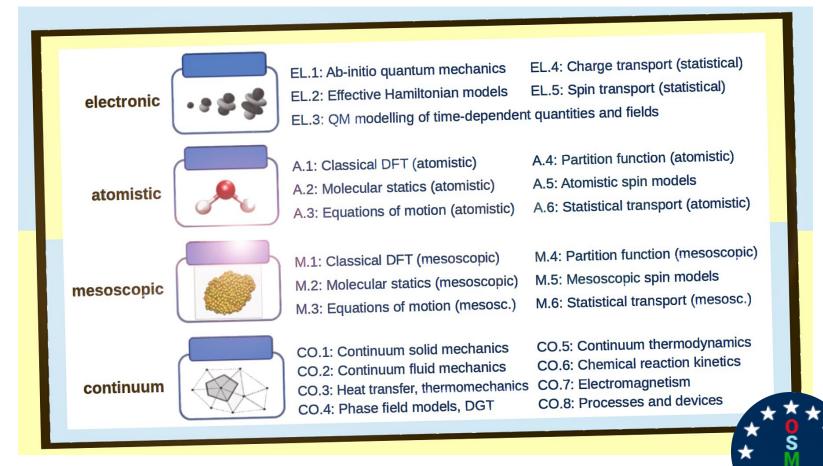
How was the data point obtained?

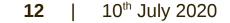
What is the margin of error, how was the error defined, and what software (or experimental setup) was used?

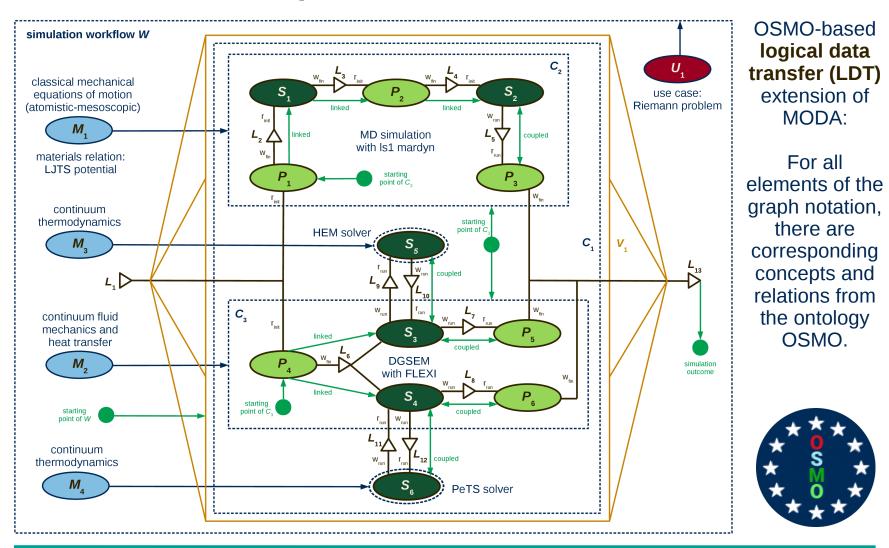
"I remember. Haha, joke. Of course I don't."



1	ASPECT OF THE U	SER CASE/SYSTEM TO BE SIMULATED	MODA workflow description
1.1	ASPECT OF THE USER CASE TO BE SIMULATED	Describe the aspects of the user case textually. No modelling information should appear in this box. This case could also be simulated by other models in a benchmarking operation! The information in this chapter can be end-user information, measured data, library data etc. It will appear in the pink circle of your workflow picture. Simulated input which would have been calculated by another model should not be included (but in chapter 2.4) Also the result of pre-processing necessary to translate the user case specifications to values for the physics variables of the entities van be documented here.	WODA WORKHOW description
1.2	MATERIAL	Describe the chemical composition, and the values used for properties and from which database these are taken. If pre-processing was needed please specify the methodology.	
1.3	GEOMETRY	Size, form, picture of the system (if applicable) Note that computational choices like simulation boxes are to be documented in chapter 3.	* EMMC * * * * * * * * * * * * * * * * * *
1.4	TIME LAPSE	Duration of the case to be simulated. This is the duration of the situation to be simulated. This is not the same as the computational times to be given in chapter 3.	MODA section 1 use case
1.5	MANUFACTURING PROCESS OR IN-SERVICE CONDITIONS	If relevant, please list the conditions to be simulated (if applicable). These can be boundary, initial and global conditions. E.g. heated walls, external pressures and bending forces, l Please note that these might appear as terms in the PE or as boundary conditions, and this will be documented in the relevant chapters. Note: These conditions will be expressed in physics relations in Ch 2.4	MODA section 2 model
1.6	PUBLICATION ON THIS DATA	Please specify the values used for parameters and from which database these are taken. If pre-processing was needed please specify the methodology. Publication documenting the simulation with this single model (if available and if not already included in the overall publication).	MODA section 4 processor







Ontology for Simulation, Modelling, and Optimization J. Chem. Eng. Data 65(3), 1313–1329, 2020

Science and Technology Facilities Council

13 | 10th July 2020

Data management on the VIMMP backend

Lifecycle Status 🝸 👻	Expertise in the Materials 🝸 👻	fluid Q	Add Filter 👻	
Q Sort By 👻	Search Q			
About 10 results	✓ 5200 fluid			۵.
Lifecycle Status	✓ 5450 electrolyte	Created On	Information Package Profile	Expertise in the Materials
Submitted	5300 bio	2020/May/04 11:22:43 (+01:00)	Translator	5700 polymer, 5400 composite,
Submitted	5350 ceramic	2020/May/04 11:25:27 (+01:00)	Translator	5200 fluid, 5450 electrolyte, 56
Submitted	5400 composite 5500 metal	2020/May/04 11:43:13 (+01:00)	Translator	5700 polymer, 5200 fluid, 5450
Submitted	Gaetano D'Avino	2020/May/04 11:33:29 (+01:00)	Translator	5200 fluid, 5500 metal, 5650 o
Submitted	Jan-Willem Handgraaf	2020/May/04 11:38:11 (+01:00)	Translator	5700 polymer, 5200 fluid, 5450

							@hasDocumentTopic		
2	Property Na	Preferred La	Definition	Property Type	Default Group	Deactivated		0	
Î	@hasCitedB	ISBN		Text	VIMMP Pro	no		0	X
Î	@hasCitedB	Number of		Integer	VIMMP Pro	no	Property Name	@hasDocumentTopic	
î	@hasCitedci	Video durati		Integer	VIMMP Pro	no	Property Type	Code List	
î	@hasCitedPr	Number of s		Integer	VIMMP Pro	no	Preferred Label	Topic (codes)	
î	@hasCodeList	CodeList	CodeList pro	Code List	Custom Pro	no	Definition		
Î	@hasDocu	Topic (codes)		Code List	VIMMP Pro	no	Path	http://purl.vimmp.eu/ontologies/otras /otras.ttl#has_document_topic	
	@hasExtern	External URL		Link	VIMMP Pro	no	Default Group	VIMMP Properties	
î	@hasFeature	Feature		Code List	VIMMP Soft	no	Information Package Property	yes	

Science and Technology Facilities Council


10th July 2020 14

Metadata-supported data ingest and retrieval

<pre>mm_topic_basic (codes 1XXX and 2XXX): Basic prerequisites for materials modelling. mm_topic_computational (codes 3XXX): Computational and numerical aspects of m mm_topic_data (codes 4XXX): Data science and technology aspects. mm_topic_materials (codes 5XXX): Topics related to fluid and solid materials. mm_topic_social (codes 6XXX): Social, economic, and community aspects. mm_topic_theoretical (codes 7XXX): Theory (non-computational aspects). mm_topic_side (codes 9XXX): Topics from other disciplines. </pre>	 aterials modelling. - 3130, 7130 physical equation EL.2 - etc. 3200, 7200 atomistic and mesoscopic - 3220, 7220 equations A.1 and M.1 - 3222, 7222 physical equation A.1 - 3225, 7225 physical equation M.1 - 3230, 7230 equations A.2 and M.2
Which class of model?	electronic EL.1: Ab-initio quantum mechanics EL.4: Charge transport (statistical) EL.2: Effective Hamiltonian models EL.5: Spin transport (statistical) EL.3: QM modelling of time-dependent quantities and fields
830 Szo	atomistic A.1: Classical DFT (atomistic) A.4: Partition function (atomistic) A.2: Molecular statics (atomistic) A.5: Atomistic spin models A.3: Equations of motion (atomistic) A.6: Statistical transport (atomistic)
Electronic Atomistic	mesoscopic M.1: Classical DFT (mesoscopic) M.4: Partition function (mesoscopic) M.2: Molecular statics (mesoscopic) M.5: Mesoscopic spin models M.3: Equations of motion (mesosc.) M.6: Statistical transport (mesosc.)
Mesoscopic Continuum	continuum CO.1: Continuum solid mechanics CO.5: Continuum thermodynamics CO.2: Continuum fluid mechanics CO.6: Chemical reaction kinetics CO.3: Heat transfer, thermomechanics CO.7: Electromagnetism CO.4: Phase field models, DGT CO.8: Processes and devices
I don't know	

VIRTUAL MATERIALS MARKETPLACE

Metadata-supported data ingest and retrieval

mm_topic_basic (codes 1XXX and 2X	XX):						
Basic prerequisites for materia	_						
mm_topic_computational (codes 3XX	6120 chemical						
Computational and numerical	6130 petrochemical						
mm_topic_data (codes 4XXX):	6140 transport						
	Data science and technology aspects.						
mm_topic_materials (codes 5XXX):		 6142 aerospace 6144 automotive 					
Topics related to fluid and soli	d materials. under 61XX: industrial	 – 6148 railway 					
mm_topic_social (codes 6XXX):		6150 biotechnology					
Social, economic, and commu	inity aspects.	6155 food					
mm_topic_theoretical (codes 7XXX):	(magata)	6160 medicine					
Theory (non-computational as	6165 paper						
mm_topic_interdisciplinary (codes 8)		6170 electrical					
mm_topic_side (codes 9XXX):		6175 machinery					
Topics from other disciplines.							
Speak to our experts at no cost		6180 metal (basic and fabricated) 6190 special topics					
	Speak to our experts at no cost	I 0190 special topics					
Which class of model?	Which business area are you from?						
Electronic Atomistic	Automotive/Aerospace Chemical industry Bio W Manufacturing Medical Other						
Mesoscopic Continuum	Continue						
l don't know							

VIRTUAL MATERIALS MARKETPLACE

Metadata-supported data ingest and retrieval

Science and

Facilities Council

Technology

mm tonia basis (adds 1777 and 27	5100 general			
mm_topic_basic (codes 1XXX and 2X	5200 fluid			
Basic prerequisites for materi	5300 bio			
mm_topic_computational (codes 3XX Computational and numerical	5350 ceramic			
	5400 composite			
mm_topic_data (codes 4XXX): Data science and technology	achaete	5450 electrolyte		
mm_topic_materials (codes 5XXX):	aspects.	5500 metal		
Topics related to fluid and sol	id materials	5550 mineral		
mm_topic_social (codes 6XXX):		5600 nano		
Social, economic, and commu	inity aspects	5650 organic		
mm_topic_theoretical (codes 7XXX):	anity aspects.	5700 polymer		
Theory (non-computational as	spects).	5750 semiconductor		
mm_topic_interdisciplinary (codes 8)		5800 ultracold		
mm_topic_side (codes 9XXX):	5850 unstable			
Topics from other disciplines.	5900 special topics			
Speak to our experts at no cost	Speak to our experts at no cost			
Which class of model?	Which business area are you from?	Which material class are you interested in?		
Electronic Atomistic	Automotive/Aerospace Chemical inductry Bio Manufacturing Medical Other	Metal Composites Polymer Other		
Mesoscopic Continuum	Continue	Continue		
T GUILENINW				

Community involvement in collaboration with the EMMC

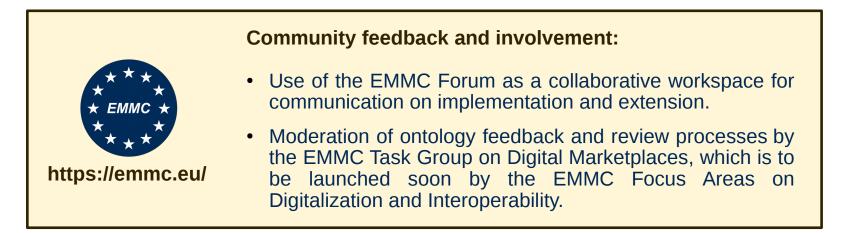
Ontology governance, continuous development and maintenance

https://emmc.eu/

European Materials Modelling Council (EMMC ASBL)

The non-profit association EMMC ASBL was created in 2019 to ensure the continuity, growth, and sustainability of community activities for modellers, materials data scientists, software owners, materials modelling translators, and manufacturers in Europe. The EMMC regards the **integration of materials modelling and digitalization** as critical for an advancement of industrial process and product design.

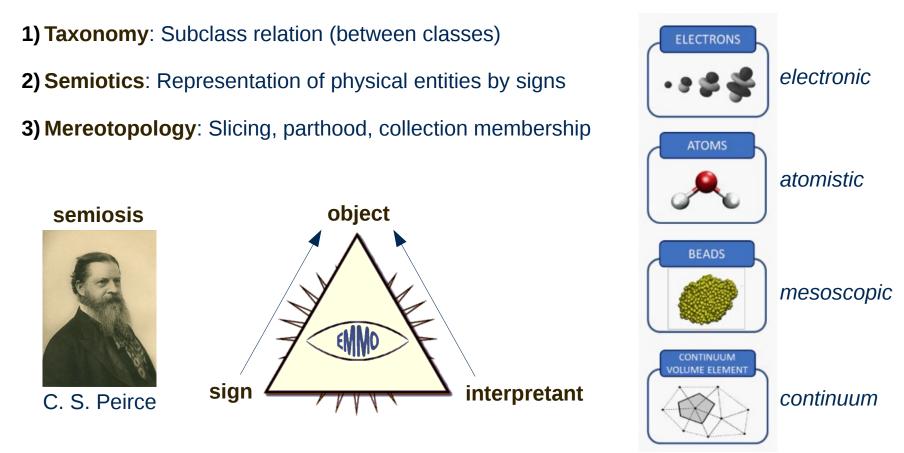
EMMC Focus Area on Digitalization


In computational engineering, digitalization encompasses aspects of representing, managing, accessing, and utilizing digital information about products, components, materials, their behaviour, and their processing.

Community involvement in collaboration with the EMMC

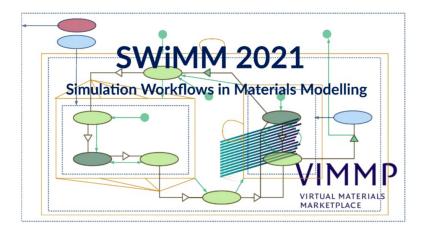
Ontology governance, continuous development and maintenance

EMMC Focus Area on Digitalization


In computational engineering, digitalization encompasses aspects of representing, managing, accessing, and utilizing digital information about products, components, materials, their behaviour, and their processing.

Community-governed top-level interoperability layer

Relations covered by the European Materials and Modelling Ontology¹ (EMMO)



¹E. Ghedini, J. Friis, A. Hashibon, G. J. Schmitz, G. Goldbeck, et al., **2020**; <u>http://emmc.info/emmo-info/</u>.

Announcement: CECAM school on simulation workflows

Simulation Workflows in Materials Modelling

 $15^{\text{th}} - 19^{\text{th}}$ March 2021

CECAM HQ École Polytechnique Fédérale de Lausanne

https://www.cecam.org/workshop-details/27

- 1. Salome and YACS: An integration platform for workflows
- 2. Atomic Simulation Environment (ASE)
- 3. Semantic interoperability and ontologies for workflows
- 4. Pyiron: An IDE for simulation workflows
- 5. Data-driven models from high throughput simulation
- 6. AiiDA + Materials Cloud informatics platform
- 7. Autotuning, load balancing, and task based parallelization

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no. 760907.

This document and all information contained herein is the property of the VIMMP Consortium (unless specified otherwise or clear by context). Information presented herein may be subject to intellectual property rights. No intellectual property rights are granted by the delivery of this document or the disclosure of its content. Reproduction or circulation of this document to any third party is prohibited without the consent of the authors.

The statements made herein do not necessarily have the consent or agreement of the VIMMP Consortium. They represent the opinion and findings of the authors.

©2020 all rights reserved.

