

Domain-specific metadata standardization in materials modelling

M. Horsch,¹ J. Francisco Morgado,² G. Goldbeck,³ D. Iglezakis,⁴ N. Konchakova,⁵ B. Schembera,¹ High Performance Computing Center Stuttgart,¹ Fraunhofer IWM,² Goldbeck Consulting Ltd,³ University of Stuttgart,⁴ Helmholtz-Zentrum Hereon⁵

DORIC-MM 2021 Workshop, European Semantic Web Conference, 7th June 2021

Hype or realistic objectives?

Example from a Horizon 2020 call¹ on "Open Science" and "Open Innovation"

The Commission considers that proposals requesting a contribution from the EU around EUR 5 million would allow this specific challenge to be addressed appropriately. Nonetheless, this does not preclude submission and selection of proposals requesting other amounts.

Expected impact:

- Remove barriers to the use of materials models by lowering the learning curve, increase the knowledge-base of European industry and the total cost of ownership leading to an industrial user base of companies increased by a factor 2;
- Increased speed of material and/or product development time and rapid design from concept to market by factor 5 and allow industry to react to changing market and regulatory demands;
- Change the operational practice of companies by making them more data driven, agile, light and competitive and thus support the Digital Single Market (DSM) objectives and thus *drastically reduced development costs for industry by a factor 2*;

¹Horizon 2020 call no. DT-NMBP-10-2019

Hype or realistic objectives?

Proposal for community recommendations: The DORIC principles

reduced development costs for industry by a factor 2;

Reducing dark data by automated metadata extraction

Dark data¹ are the opposite of FAIR data: On HPC systems, in filesharing environments, and on computers of individual researchers, data become worthless unless they are sufficiently annotated, *e.g.*, supported by an automated workflow.²

Above: ExtractIng workflow,² yielding provenance metadata, quantity values, *etc.*

¹B. Schembera, J. Durán, *Philosophy & Technology* 33, 93–115, doi:10.1007/s13347-019-00346-x, **2019**. ²B. Schembera, *Journal of Supercomputing*, doi:10.1007/s11227-020-03602-6, **2021**.

4

Design of disciplinary interoperability architectures

Strategies for reusing pre-existing semantic artefacts

- 1)Total *design from scratch*: Coherent system and philosophy. This approach risks failing to create sufficiently well-designed schemas or patterns for all aspects.
- 2)Middle path: Particularly *important patterns and branches are designed for a dedicated purpose*, new concepts and relations for domains are created where needed, while pre-existing ontologies are referenced where that is beneficial.
- 3)Reuse pre-existing semantic artefacts wherever possible for a maximum of immediate interoperability with external data and platforms. Specific new concepts and relations are introduced at the domain level, to a restricted extent.

Challenge: Pre-existing ontologies can contradict each other. If strategy 2 or 3 is followed, the implementation must allow knowledge bases to remain consistent.

Design of disciplinary interoperability architectures

Strategies for integrating dedicated with pre-existing semantic artefacts

1) Explicit *import statements* in the TTL file: Some or all reused ontologies are loaded automatically, and the reasoner is applied to the whole framework.

2) References to external namespaces are treated *analogous to hyperlinks*, where supporting information is reproduced (*e.g.*, "schema:Action a owl:Class"), using

- a) redeclaration (*e.g.*, "m4i:Action owl:equivalentClass schema:Action")
- b) no redeclarations, but subsumption statements using rdfs:subClassOf;
- c) annotation properties or comments about ontology alignment.

3) No external information is reproduced; users load these ontologies if needed.

Combining mutually inconsistent ontologies is limited to weak alignment (no. 2).

Metadata standardization based on top-level ontologies

NFDI4Cat explores using OntoCAPE, developed by the Marquardt group^{1, 2, 3} for

CAPE: Computer-Aided Process Engineering.

OntoCAPE combines domain-specific and top-level conceptualizations.

¹J. Morbach *et al.*, technical reports LPT-2008-24 & LPT-2008-25, RWTH Aachen University, **2008**.
²J. Morbach, A. Wiesner, W. Marquardt, *Computer Aided Chemical Engineering* 25, 991–996, **2008**.
³A. Wiesner, J. Morbach, W. Marquardt, *Computers & Chemical Engineering* 35(4), 692–708, **2011**.

Metadata standardization based on top-level ontologies

the semiosis, a process by which a new representamen, the interpretant, is created

C. S. Peirce

•••

European Materials and Modelling Ontology¹

1) Taxonomy:

Conceptual hierarchy (subclass relation)

2) Mereotopology:

Spatiotemporal parthood and connectivity

3) Semiotics:

Representation of physical entities by signs

¹G. Goldbeck et al., Proc. NAFEMS World Congress, NWC_19_86, **2019**.

5

EMMO-based design of ontologies in materials modelling

DORIC-MM @ ESWC 2021

7th June 2021

•••

Connecting MODA provenance metadata to the EMMO

¹M. T. Horsch et al., Journal of Chemical & Engineering Data 65(3), 1313–1329, **2020**.

••

•••

Connecting MODA provenance metadata to the EMMO

••

OSMO-based provenance description as an extension of the MODA workflow metadata standard:

For all elements of the graph notation, there are corresponding concepts and relations from the ontology OSMO.

Data provenance description following Peircean semiotics

Mereosemiotics:^{1, 2, 3} **Combination of mereotopology and Peircean semiotics**

¹M. T. Horsch, S. Chiacchiera, B. Schembera, M. A. Seaton, I. T. Todorov, *Proc. WCCM-ECCOMAS 2020*, **2021**. ²First-order logic implementation, doi:10.5281/zenodo.4849611; examples, doi:10.5281/zenodo.4679522. ³Introduction and relation to EMMO and MODA discussed by H. A. Preisig *et al.*, DAMDID 2021, submitted.

Data provenance description following Peircean semiotics

Schema from the PIMS interoperability infrastructure^{1, 2, 3} (PIMS-II)

¹Introduction and relation to EMMO and MODA discussed by H. A. Preisig *et al.*, DAMDID, submitted, **2021**. ²PIMS-II OWL ontology for cognitive processes accessible at http://www.molmod.info/semantics/pims-ii.ttl. ³Modal first-order logic ontology at 10.5281/zenodo.4849611; examples at doi:10.5281/zenodo.4679522.

Variables and quantity values: Semiotic collectives

"200 kPa" should be **the same value**, no matter where it appears as 4D object. Implementing this with the EMMO is challenging due to nominalism. Solution:

Previous work by Masolo *et al.*¹ proposes three categories: Pluralities, proper collectives, and composites. The PIMS interoperability infrastructure^{2, 3} (PIMS-II) ontology for cognitive processes defines **semiotic collectives** as entities that appear jointly as a representational element, *i.e.*, as a representamen or referent. Four categories: Pluralities, structures, articulations, and propositions.³

¹C. Masolo, L. Vieu, R. Ferrario, S. Borgo, D. Porrello, *Proc. FOIS 2020*, pp. 186–200, 2020.
²H. A. Preisig, P. Klein, N. Konchakova, M. T. Horsch, *DAMDID 2021*, submitted, 2021.
³M. T. Horsch, *FOUST 2021*, submitted, manuscript at doi:10.5281/zenodo.4849611, 2021.

Variables and quantity values (example: molecular models)

•••

DORIC-MM @ ESWC 2021

7th June 2021

Domain-specific metadata standardization in materials modelling

M. Horsch,¹ J. Francisco Morgado,² G. Goldbeck,³ D. Iglezakis,⁴ N. Konchakova,⁵ B. Schembera,¹ High Performance Computing Center Stuttgart,¹ Fraunhofer IWM,² Goldbeck Consulting,³ University of Stuttgart,⁴ Helmholtz-Zentrum Hereon⁵

DORIC-MM 2021 Workshop, European Semantic Web Conference, 7th June 2021

