

Norges miljø- og biovitenskapelige universitet

Knowledge representation for reliable materials modelling translation

M. T. Horsch,^{1, 2} S. Chiacchiera,² C. Niethammer,³ B. Schembera,⁴ F. Diewald,⁵ P. Klein,⁵ S. Stephan,⁶ H. A. Preisig,⁷ N. A. Konchakova,⁸ and W. L. Cavalcanti⁹

¹Norweg. Univ. Life Sciences, ²UKRI STFC Daresbury Laboratory, ³High Performance Computing Center Stuttgart, ⁴Univ. Stuttgart, ⁵Fraunhofer ITWM, ⁶TU Kaiserslautern, ⁷Norweg. Univ. Science & Technology, ⁸Helmholtz-Zentrum Hereon, ⁹Fraunhofer IFAM

ECCOMAS 2022

9th June 2022

Lillestrøm

Translation in materials modelling

ECCOMAS 2022

Epistemic opacity

Epistemic opacity (Humphreys, 2011): A cognitive "process is **epistemically opaque** relative to a cognitive agent *X* at time *t* just in case *X* does not know at *t* all of the **epistemically relevant elements** of the process."

Epistemic metadata: Information that should be included in an adequate response to the queries "what **knowledge claims** have been formulated on the basis of the given data?" and "what exactly is the relation between the knowledge claims, their proponents, and the data?"

European Al Act proposal: "To address the **opacity** that may make certain Al systems **incomprehensible to or too complex for natural persons**, a certain degree of transparency should be required for high-risk Al systems.¹ Users should be able to interpret the system output and use it appropriately. High-risk Al systems should therefore be accompanied by **relevant documentation**".

¹Systems with "high risk" include all "safety components" related to "water, gas, heating, and electricity."

The aim: Epistemic FAIRness

Epistemic opacity and darkness of data can be countered by **epistemic FAIRness**, *i.e.*, FAIR provision of all the **relevant epistemic metadata** via digital infrastructures. Such infrastructures must permit reevaluating processes and results.

Q: 1. How were the data obtained - what is the **data provenance**?

- 2. What do the data say what **knowledge claims** do we base on the data?
- 3. Why should we accept them what is their **epistemic grounding**?

¹K. Tulatz, *Epistemologie als Reflexion wissenschaftlicher Praxen*, **2018**. ECCOMAS 2022 9th June 2022 Norwegian University of Life Sciences

onto-

logization

Closed epistemic spaces: Example

MODA, the expired CWA attempt at standardization,^{1, 2} is a textbook example for a closed epistemic space, suitable for documenting **technical information** only – not the outcome from **scientific practice**.³

¹A. F. de Baas (ed.), What Makes a Material Function?, ISBN 978-92-79-63185-6, 2017.
 ²Journal of Chemical & Engineering Data 65, 1313, doi:10.1021/acs.jced.9b00739, 2020.
 ³K. Tulatz, Epistemologie als Reflexion wissenschaftlicher Praxen, 2018.
 ECCOMAS 2022
 9th June 2022

BPMN as a process model

BPMN is a powerful workflow notation, standardized¹ as ISO/IEC 19510:2013.

Example by A. Segatto, M. Milleri, C. Kavka, COMPOSELECTOR project deliverable 3.4, **2018**. ¹See also the specification at https://www.omg.org/spec/BPMN/2.0.2/PDF.

ECCOMAS 2022

VIMMP system of ontologies

9th June 2022

Norwegian University of Life Sciences

Noregs miljø- og biovitskaplege universitet

Mereosemiotics in knowledge representation

The novel platforms in materials digitalization all use ontologybased semantic technology. Some of them either plan or claim to be EMMO compliant.¹

How can we work with the rather novel approach of the EMMO?

VIRTUAL MATERIALS MARKETPLACE

H2020 GA no. 760907

H2020 GA no. 953163

ECCOMAS 2022

H2020 GA no. 952903

9th June 2022

¹Since the EMMO stable release v1.0 has been delayed by over four years and has not occurred yet, this cannot go beyond an intention.

Lillestrøm

U

M +

Molecular modelling knowledge graph^N

¹S. Stephan et al., Mol. Sim. 45, 806-814, **2019**. ²M. Horsch et al., Proc. ISWC, **2020**.

ECCOMAS 2022

Mereotopology and Peircean semiotics

Peircean semiotics

the semiosis, a process by which a new representamen, the interpretant, is created

C. S. Peirce

Elementary Multiperspective Material Ontology^{1,2}

1) Taxonomy:

Conceptual hierarchy (subclass relation)

2) Mereotopology:

Spatiotemporal parthood and connectivity

3) Semiotics:

Representation of physical entities by signs

¹H. A. Preisig *et al.*, doi:10.23967/wccm-eccomas.2020.262, no. 262 in *Proc. ECCOMAS 2020*, **2021**. ²S. Clark *et al.*, *Adv. Energ. Mat.* 12(17), 2102702, doi:10.1002/aenm.202102702, **2022**.

ECCOMAS 2022

9th June 2022

Norwegian University of Life Sciences

11

Cognitive steps: Taxonomy

ECCOMAS 2022

PIMS-II is a mid-level ontology for scientific workflows as cognitive processes.^{1,2}

perception requires participation (and overlap) of the perceived object

Cognitive steps in mereosemiotics

PIMS-II is a mid-level ontology for scientific workflows as cognitive processes.^{2, 3} Mereosemiotics:¹⁻³ Combination of mereotopology and Peircean semiotics

Norwegian University of Life Sciences

 ¹M. T. Horsch, S. Chiacchiera, B. Schembera, M. A. Seaton, I. T. Todorov, in *Proc. ECCOMAS 2020*, **2021**.

 ²M. T. Horsch, no. 3 in *Proc. JOWO 2021*, **2021**.

 ³P. Klein *et al.*, no. 26 in *Proc. JOWO 2021*, **2021**.

 ECCOMAS 2022
 9th June 2022

 12

¹P. Klein *et al.*, no. 26 in *Proc. JOWO 2021*, **2021**.

ECCOMAS 2022

Noregs miljø- og biovitskaplege universitet

Conclusion

H2020 GA no. 760907

H2020 GA no. 953163

ECCOMAS 2022

H2020 GA no. 952903

In research data provenance and workflow documentation, a new standardization effort is needed. The MODA CWA has expired.

We need a shift toward making the knowledge claims machineactionable, not mainly workflows.

> There, standardization must permit both semantic and epistemic heterogeneity.

Norges miljø- og biovitenskapelige universitet

Knowledge representation for reliable materials modelling translation

M. T. Horsch,^{1, 2} S. Chiacchiera,² C. Niethammer,³ B. Schembera,⁴ F. Diewald,⁵ P. Klein,⁵ S. Stephan,⁶ H. A. Preisig,⁷ N. A. Konchakova,⁸ and W. L. Cavalcanti⁹

¹Norweg. Univ. Life Sciences, ²UKRI STFC Daresbury Laboratory, ³High Performance Computing Center Stuttgart, ⁴Univ. Stuttgart, ⁵Fraunhofer ITWM, ⁶TU Kaiserslautern, ⁷Norweg. Univ. Science & Technology, ⁸Helmholtz-Zentrum Hereon, ⁹Fraunhofer IFAM

ECCOMAS 2022

9th June 2022

Lillestrøm