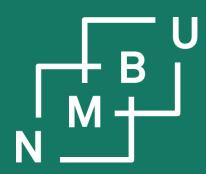



Norges miljø- og biovitenskapelige universitet


European standardization efforts from <u>FAIR</u> toward explainable-AI-ready (<u>XAIR</u>) data documentation in materials modelling

Martin T. Horsch,¹ Björn Schembera,² Heinz A. Preisig³

¹Norwegian University of Life Sciences, Department of Data Science ²University of Stuttgart, Institute of Applied Analysis and Numerical Simulation ³Norwegian University of Science and Technology, Department of Chemical Engineering

Fakultet for realfag og teknologi

Institutt for datavitenskap

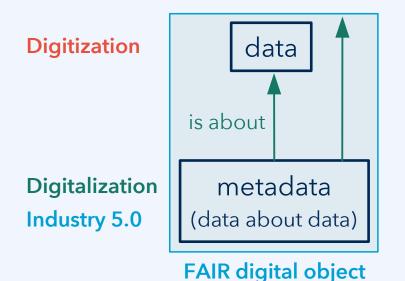
Noregs miljø- og biovitskaplege universitet

<u>The need</u> The state of the art What are we proposing?

Institutt for datavitskap

Epistemic opacity (Humphreys, 2011): A cognitive "process is **epistemically opaque** relative to a cognitive agent *X* at time *t* just in case *X* does not know at *t* all of the **epistemically relevant elements** of the process."

European AI Act proposal: "To address the **opacity** that may make certain AI systems **incomprehensible to or too complex for natural persons**, a certain degree of transparency should be required for high-risk AI systems. [...] High-risk AI systems should therefore be accompanied by **relevant documentation**".


ICAPAI 2023

2nd May 2023

Institutt for datavitskap

Digitization and digitalization

Metadata are "descriptive data about an object" (ISO 11179).

Leiden 2022 Declaration for **FAIR digital objects**:

https://www.fdo2022.org/site/fdo/ programme/leiden-declaration

ICAPAI 2023

The librarian:

- Focus on archival and curation
- Help humans to make FAIR use of digital artefacts
- Focus on provenance, like for artefacts in a museum, so humans understand where they come from

The engineer:

- Computers must "understand" what the digital artefacts mean
- Focus on knowledge/meaning
- We need FAIR digital objects

2nd May 2023

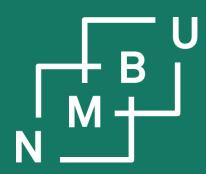
Norwegian University

Norwegian University of Life Sciences

Epistemic metadata

Metadata are "descriptive data about an object" (ISO 11179).

Epistemic metadata are those that help establish the knowledge status of data.


Epistemic metadata:

- **a)** "what **knowledge claim** ϕ has been formulated?,"
- **b)** "where do the data and the claim come from?" (provenance),
- c) "what validity claim was made about φ ?,"
- d) "why should we accept any of this?" (grounding).

Case study from molecular thermodynamics

- First stage, evaluating ten journal articles, doi:10.5281/zenodo.7516532.
- Second stage, discussing twelve claims, doi:10.5281/zenodo.7608074.

ICAPAI 2023

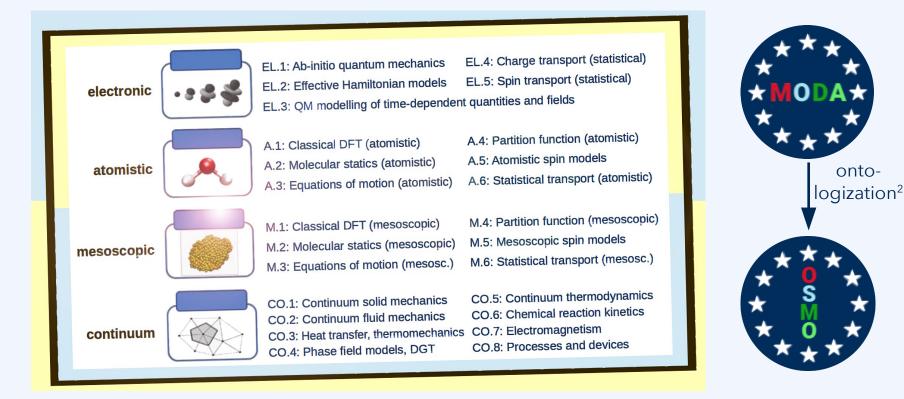
Noregs miljø- og biovitskaplege universitet

The need <u>The state of the art</u> What are we proposing?

Institutt for datavitskap

EMMC-related development efforts from 2017 onward (stable release soon) have lead to a novel, radically physicalistic **top-level ontology**: The **Elementary Multiperspective Material Ontology** (EMMO). The EMMO includes a **Peircean semiotics** as a "perspective" on cognition.

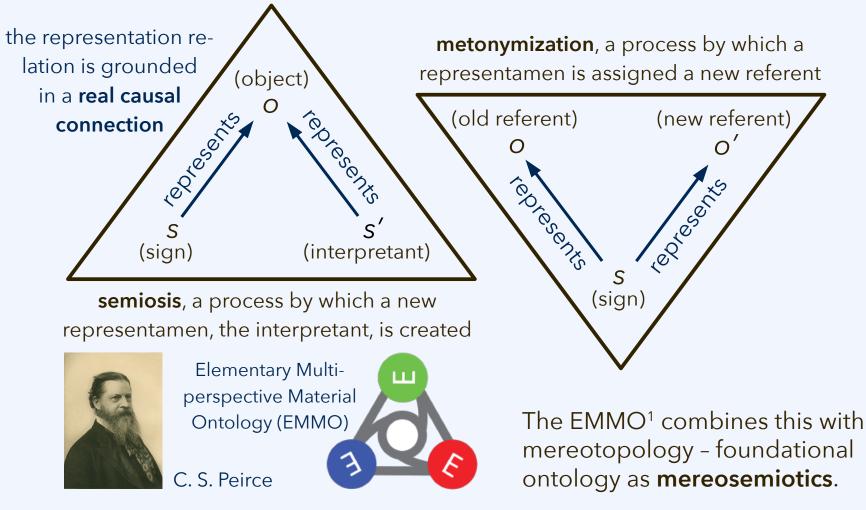
The European Materials Modelling Council (EMMC) community has developed three CEN workshop agreements (CWAs) as documentation standards: CEN 17284 MODA ("model data" provenance), CWA 17815 CHADA ("characterization data" provenance), CEN 17960 ModGra ("model graphs" for process model toplogies).

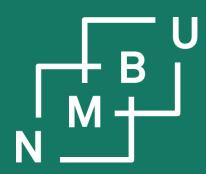

ICAPAI 2023

2nd May 2023

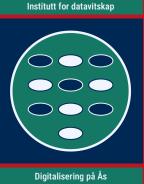
Institutt for datavitskap

RoMM (2017), MODA (2018), and CHADA (2021)


As an attempt at metadata standardization,^{1, 2} RoMM/MODA resulted in a closed epistemic space with a rigid categorization of modelling methodologies. MODA/CHADA documentations are hard to create and **hard to use by humans and not machine-actionable**.


¹A. F. de Baas (ed.), What Makes a Material Function?, ISBN 978-92-79-63185-6, **2017**. ²Journal of Chemical & Engineering Data 65, 1313, doi:10.1021/acs.jced.9b00739, **2020**.

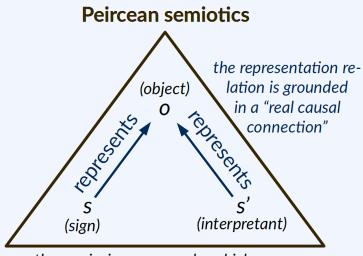
EMMO¹ and Peircean semiotics


Peircean semiotics: By using a sign (1st) for an object (2nd), a "Third" is created.

¹The work on the EMMO (2017 - present) is coordinated by Emanuele Ghedini.

Noregs miljø- og biovitskaplege universitet

The need
The state of the art
<u>What are we proposing?</u>


The **PIMS-II mid-level ontology** implements a data documentation strategy based on **epistemic metadata** building on Peircean semiotics. Our present work has its focus on **knowledge claims** (what we know from data) and their assessment through validity claims, including **reproducibility claims**.

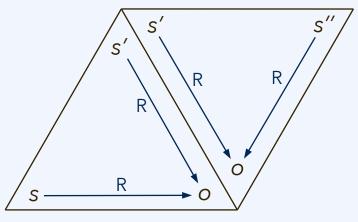
ICAPAI 2023

2nd May 2023

Institutt for datavitskap

Peircean semiotics: Provenance

the semiosis, a process by which a new representamen, the interpretant, is created

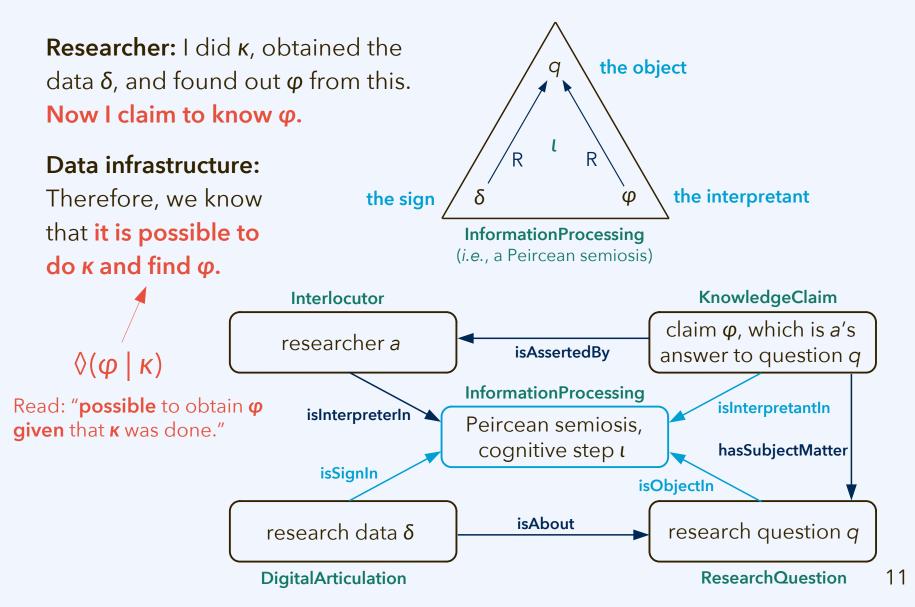

Each cognitive step starts from one representation relation, *e.g.*, *Rso*, and creates a new one, *Rs'o*.

The successor step reuses *Rs'o* and creates the next relation, *Rs"o*.

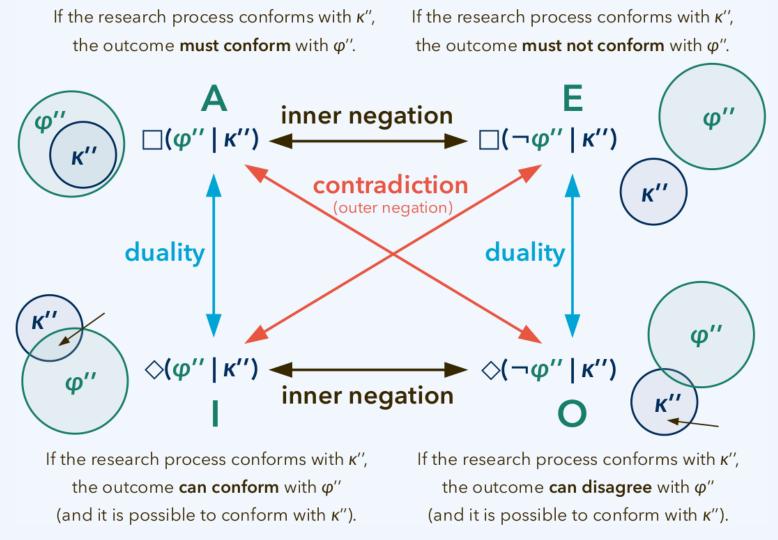
Cognitive process (example):


- First, experimental data s for material o are used to parameterize a model, obtaining model s'.
- Then, a simulation is done using model s', yielding the simulation result s" (which also represents o).

Research workflows as cognitive processes:


cognitive process ĸ

Peircean semiotics: Knowledge claims


10

Peircean semiotics: Knowledge claims

Norwegian University of Life Sciences

Modal square of opposition

ICAPAI 2023

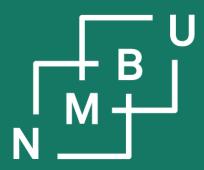
2nd May 2023

Reproducibility claims

Common formulation and schema for reproducibility claims (RCs):

«Whenever research process κ'' is carried out, it must lead to the outcome ϕ'' .»

1) Reseacher *a* did κ and found φ .


Here, *a* also made the **positive reproducibility claim** $\psi = \Box(\varphi'' | \kappa'')$.

2) Reseacher *b* did γ , **consistent with** κ'' , and found ζ , **inconsistent with** ϕ'' .


Here, *b* made the **negative reproducibility claim** $\langle \neg \varphi'' | \kappa'' \rangle \equiv \neg \Box (\varphi'' | \kappa'') \equiv \neg \psi$.

3) What is relevant there is the **contradiction between** ψ and $\neg \psi$.

provenance metadata κ provenance paradata κ'	knowledge claim metadata $oldsymbol{arphi}$ knowledge claim paradata $oldsymbol{arphi}'$
provenance orthodata $\kappa'' = \kappa - \kappa'$	knowledge claim orthodata $\varphi'' = \varphi - \varphi'$
«repeat к, but no need to retain к	κ' » «obtain ϕ again, except for ϕ' maybe»
ICAPAI 2023	2 nd May 2023 13

Norges miljø- og biovitenskapelige universitet

European standardization efforts from <u>FAIR</u> toward explainable-AI-ready (<u>XAIR</u>) data documentation in materials modelling

Martin T. Horsch,¹ Björn Schembera,² Heinz A. Preisig³

¹Norwegian University of Life Sciences, Department of Data Science ²University of Stuttgart, Institute of Applied Analysis and Numerical Simulation ³Norwegian University of Science and Technology, Department of Chemical Engineering

Fakultet for realfag og teknologi

Institutt for datavitenskap