

Subtraction and simulation

Martin Thomas Horsch

11th June 2023 GCAS Conference 2023 // 8th Annual GCAS Summer Institute

Fakultet for realfag og teknologi

Forskergruppe materialteori og -informatikk

Logical subtraction
 Molecular simulation
 Epistemic metadata
 Reproducibility claims

Digitalisering på Ås

Materialteori og -informatikk

Example from Yablo: Someone who rejects ontological commitment to the existence of numbers is asked how many prime numbers there are greater than ten. "Infinitely many, of course, except that numbers don't exist."

GCAS Conference 2023

11th June 2023

Logical subtraction and subject matter

Norwegian University of Life Sciences

Logical subtraction is a concept from analytic philosophy.¹⁻³ Its formalization is closely connected to the theory of **subject matter**.^{2, 3}

> Could you try to **replicate my old simulation result**? Just do the same as I did. **Except that** you of course log in with your user account, not mine. Your result was off by 0,5%? **Don't worry**, that is totally normal.

Our **simulation of object o** confirms theory *s*. **Except that** theory *s* deals with physical reality, and *o* is so simplified that **we know it cannot exist** or be built exactly in physical reality.

Example from Yablo:² Someone who rejects ontological commitment to the existence of numbers is asked how many prime numbers there are greater than ten. "Infinitely many, of course, except that numbers don't exist."

¹R. A. Jaeger, *Philos. Rev.* 82(3): 320–329, doi:10.2307/2183898, 1973.
²S. Yablo, *Aboutness*, Princeton Univ. Press (ISBN 978-0-691-14495-5), 2014.
³K. Fine, *J. Philos. Log.* 46: 675–702, doi:10.1007/s10992-016-9419-5, 2017.
GCAS Conference 2023

System with two separate elementary **topics** / **subject matters**: *x* and *y*.

There are four possible values for x and three possible values for y.

GCAS Conference 2023

11th June 2023

Subtraction of information

 φ_{A} is about x and y

 $\psi = \varphi_A \wedge \varphi_B$

$$\boldsymbol{\psi} - \boldsymbol{\varphi}_{y} = (\boldsymbol{\varphi}_{x} \wedge \boldsymbol{\varphi}_{y}) - \boldsymbol{\varphi}_{y} \equiv \boldsymbol{\varphi}_{x}$$

 $\boldsymbol{\varphi}_{x}$ is recovered by subtracting $\boldsymbol{\varphi}_{y}$

$$\boldsymbol{\psi}$$
 - $\boldsymbol{\varphi}_{\mathrm{B}}$ = $(\boldsymbol{\varphi}_{\mathrm{A}} \wedge \boldsymbol{\varphi}_{\mathrm{B}})$ - $\boldsymbol{\varphi}_{\mathrm{B}} \neq \boldsymbol{\varphi}_{\mathrm{A}}$

Logical subtraction
 <u>Molecular simulation</u>
 Epistemic metadata
 <u>Reproducibility claims</u>

Simulation is a kind of **fiction**. We must **suspend our disbelief** to accept the simulated scenario. Can this suspension be understood as **subtraction**?

GCAS Conference 2023

11th June 2023

Molecular simulation in engineering

Computational

Molecular Engineering

- Data Management and Technology
 - Scientific and High-Performance Computing

Fictional objects in computational engineering

Naive view: The simulation **represents** a real physical process, the model represents a real physical system.

Actual practice:

The simulated process is almost always **fictitious**; often, it is **impossible** – it cannot technically occur.

While models legitimately represent real systems, they simplify them. Often, simulations really aim at **characterizing the model** as such, not a real system.

Searle, The logical status of fictional discourse:1

- "to explore the difference between fictional and serious utterances [...] is not to explore the difference between figurative and literal utterances, which is another distinction quite independent of the first"
- "work[s] of fiction are made possible by [...] a set of conventions which suspend the normal operation of the rules relating illocutionary acts and the world"

¹In J. R. Searle, *Expression and Meaning:* Chapter 3, Cambridge Univ. Press, **1979**.

Modelling and simulation based decision support decision modelling problem symbolic representation world

optimization

real

world

actionable decision validation

simulation

symbolic

representation

Suspension as subtraction

Modelling and simulation has a **figurative/metaphorical aspect**: In the virtual reality of a simulation, there are *p*, *T*, *etc*., and in physical reality, there are also *p*, *T*, *etc*., but despite the same symbols, these are very different quantities.

But to be productive, this mechanism also requires an **aspect of fiction**. The model represents a fictitious entity *o*, but it is "**not about** whether *o* can exist."

Our **simulation of object o** confirms theory *s*.

Except that theory *s* deals with physical reality, and *o* is so simplified that **we know it cannot exist** or be built exactly in physical reality.

Searle, The logical status of fictional discourse:1

- "to explore the difference between fictional and serious utterances [...] is not to explore the difference between figurative and literal utterances, which is another distinction quite independent of the first"
- "work[s] of fiction are made possible by [...] a set of conventions which suspend the normal operation of the rules relating illocutionary acts and the world"

¹In J. R. Searle, *Expression and Meaning:* Chapter 3, Cambridge Univ. Press, **1979**.

Logical subtraction
 Molecular simulation
 <u>Epistemic metadata</u>
 <u>Reproducibility claims</u>

Epistemic opacity (Humphreys, 2011): A cognitive "process is **epistemically opaque** relative to a cognitive agent *X* at time *t* just in case *X* does not know at *t* all of the **epistemically relevant elements** of the process."

Materialteori og -informatikk

Digitalisering på Ås

European AI Act proposal: "To address the **opacity** that may make certain AI systems **incomprehensible to or too complex for natural persons**, a certain degree of transparency should be required for high-risk AI systems. [...] High-risk AI systems should therefore be accompanied by **relevant documentation**".

GCAS Conference 2023

11th June 2023

Data management: Librarianship vs. engineering

Metadata are "descriptive data about an object" (ISO 11179).

The librarian:

- Focus on archival and curation
- Help humans use digital artefacts
- Focus on provenance, like for artefacts in a museum, so humans understand where they come from

The engineer:

- Computers must understand what the digital artefacts mean
- Focus on knowledge
- FAIR digital objects^{1, 2}
- Aim: Machine-actionability²

¹I. Anders et al., FAIR Digital Object Technical Specification, doi:10.5281/zenodo.7824713, 2023.
²C. Weiland, S. Islam, et al., FDO Machine Actionability, doi:10.5281/zenodo.7825649, 2023.
11

Epistemic metadata

Metadata are "descriptive data about an object" (ISO 11179).

Epistemic metadata are those that help establish the knowledge status of data.¹

Epistemic metadata in the PIMS-II mid-level ontology:

- a) "what knowledge claim φ has been formulated?,"
- **b)** "where do the data and the claim come from?" (provenance),
- **c)** "what **validity claim** was made about φ ?,"
- d) "why should we accept any of this?" (grounding).

Case study from molecular thermodynamics

- First stage, evaluating ten journal articles, doi:10.5281/zenodo.7516532.
- Second stage, discussing twelve claims, doi:10.5281/zenodo.7608074.

¹M. T. Horsch, B. Schembera, in *Proc. JOWO 2022*, CEUR *vol.* **3249**: *p*. 2 (CAOS), **2022**.

Reproducibility and falsification^{1, 2}

Research data infrastructures must accommodate mutually contradicting claims. They should also assist researchers at validating/falsifying each other's work.

Let us look into a "falsification" or "unsuccessful reproduction" of *a*'s work by *b*:

Knowledge claim (KC), including the provenance

«Researcher a did κ and found φ (and thus claims to know φ).» → Therefore, when research process κ is carried out, it <u>can</u> lead to the outcome φ .

- 1) Reseacher *a* did κ and found φ .
- 2) Reseacher b did γ , which is very similar to κ , and found ζ , not very similar to φ .
- 3) Nobody disputes a's integrity. Nobody disputes that "a did κ and found φ ."

What allows *b* to claim that this is some sort of falsification?

¹M. T. Horsch, S. Chiacchiera, G. Guevara, M. Kohns, *et al.*, in *Proc. FOIS 2023*, to appear, **2023**.

²H. E. Plesser, *Frontiers Neuroinform* **11**: 76, doi:10.3389/fninf.2017.00076, **2018**.

Logical subtraction
 Molecular simulation
 Epistemic metadata

4. <u>Reproducibility claims</u>

Digitalisering på Ås

Materialteori og -informatikk

Reproducibility claim (RC)

«Whenever the research process κ'' is carried out, it <u>must</u> lead to the outcome φ'' .»

GCAS Conference 2023

11th June 2023

Modal square of opposition

If the research process conforms with κ'' , the outcome **must conform** with ϕ'' . If the research process conforms with κ'' , the outcome **must not conform** with φ'' .

If the research process conforms with κ'' , the outcome **can conform** with φ'' (and it is possible to conform with κ''). If the research process conforms with κ'' , the outcome **can disagree** with φ'' (and it is possible to conform with κ'').

Norwegian University of Life Sciences

Orthodata and paradata

provenance metadata κ provenance paradata κ'

provenance orthodata $\kappa'' = \kappa - \kappa'$

«repeat κ , but no need to retain κ' »

knowledge claim metadata $oldsymbol{arphi}$ knowledge claim paradata $oldsymbol{arphi}'$

knowledge claim orthodata $\varphi'' = \varphi - \varphi'$ «obtain φ again, except for φ' maybe»

GCAS Conference 2023

Reproducibility claims¹

Common formulation and schema for reproducibility claims (RCs):

«Whenever research process κ'' is carried out, it must lead to the outcome ϕ'' .»

- there, *a* also made the **positive reproducibility claim** $\psi = \Box(\varphi'' | \kappa'')$.
- 2) Reseacher *b* did γ , consistent with κ'' , and found ζ , inconsistent with φ'' . Here, *b* made the **negative reproducibility claim** $\langle (\neg \varphi'' | \kappa'') \equiv \neg \Box (\varphi'' | \kappa'') \equiv \neg \psi$.
- 3) What is relevant there is the **contradiction between** ψ and $\neg \psi$.

provenance metadata κ provenance paradata κ' knowledge claim metadata $oldsymbol{arphi}$ knowledge claim paradata $oldsymbol{arphi}'$

provenance orthodata $\kappa'' = \kappa - \kappa'$

«repeat κ , but no need to retain κ' »

knowledge claim orthodata $\varphi'' = \varphi - \varphi'$

«obtain ϕ again, except for ϕ' maybe»

¹M. T. Horsch, S. Chiacchiera, G. Guevara, M. Kohns, *et al.*, in *Proc. FOIS 2023*, to appear, **2023**.

GCAS Conference 2023

11th June 2023

Subtraction and simulation

Martin Thomas Horsch

11th June 2023 GCAS Conference 2023 // 8th Annual GCAS Summer Institute

Fakultet for realfag og teknologi

Forskergruppe materialteori og -informatikk