

Norges miljø- og biovitenskapelige universitet

Case study on epistemic [®] metadata in molecular modelling

Martin Horsch,^{1, 2} Silvia Chiacchiera,² and Björn Schembera³

¹Norwegian Univ. Life Sciences, Faculty of Science and Technology, Ås, Norway ²UKRI STFC Daresbury Laboratory, Scientific Computing Department, Daresbury, UK ³Univ. Stuttgart, Institute of Applied Analysis and Numerical Simulation, Stuttgart, Germany

Fakultet for realfag og teknologi

Forskergruppe materialteori og -informatikk

Noregs miljø- og biovitskaplege universitet

Domain and background First stage and an ontology Second stage and grounding

Philosophy@HLRS SAS23

30. november 2023

Materialteori og -informatikk

Molecular simulation in engineering

Philosophy@HLRS SAS23

30th November 2023

Universität Stuttgart

Norwegian University of Life Sciences

> Science and Technology Facilities Council

CWA 17284: 2018 E

«MODA»

The EMMC's first attempts

EMMC: European Materials Modelling Council

The EMMC's documentation standard MODA ("model data") failed to meet researchers' needs by making too much annotation mandatory, much more than needed in practice.

- MODA was a closed semantic and epistemic space: Modelling methods had to be chosen from a small list.^{1,2}
- MODA imposed a **given level of detail** in workflow documentation.¹
- MODA documentations were **complicated**.³

¹CEN Workshop Agreement 17284:2018 E, «Materials modelling: Terminology, classification and metadata», **2018**. ²A. F. de Baas, What Makes a Material Function? Let Me Compute the Ways, EU Publications, doi:10.2777/417118, 2017. ³ReaxPro project deliverable D2.1, «ReaxPro MODA diagrams», **2020**.

Philosophy@HLRS SAS23

The EMMC's first attempts

Focus on provenance documentation

- MODA was a closed semantic and epistemic space: Modelling methods had to be chosen from a small list.
- MODA imposed a given level of detail in workflow documentation; namely, unrealistically detailed.
- MODA documentations were complicated and of limited use to all, including to humans.^{1, 2}

¹ReaxPro project deliverable D2.1, «ReaxPro MODA diagrams», **2020**.

²«European standardization efforts from FAIR toward explainable-AI-ready data documentation in materials modelling», in *Proc. ICAPAI 2023*, doi:10.1109/icapai58366.2023.10193944, IEEE, **2023**.

Philosophy@HLRS SAS23

30th November 2023

Norwegian University of Life Sciences

CWA 17284:

Case study in molecular modelling

Epistemic metadata and their documentation were explored for the domain of molecular modelling and simulation within engineering thermodynamics:

First stage report (10 cases), doi:10.5281/zenodo.7516532, 2023.

Discussion of *five papers each* from *two research groups* (London, Berlin) without involving the papers' authors. Obtained a tentative **taxonomy for epistemic metadata**, later implemented into the PIMS-II ontology.

Second stage report (12 claims), doi:10.5281/zenodo.7608074, 2023.

Discussion of *two claims each* from *six papers*, with two papers each from three research groups (London, Berlin, Kaiserslautern), involving the papers' authors. Discussed aspects such as the **grounding of knowledge claims** with authors.

Noregs miljø- og biovitskaplege universitet

Domain and background **First stage and an ontology** Second stage and grounding

Key epistemic metadata items are the **knowledge claims** made based on data, their **provenance**, **validation** and **reproducibility**, and **epistemic grounding**.

Philosophy@HLRS SAS23

30. november 2023

Materialteori og -informatikk

Problem and idea behind epistemic metadata

Dark data are data with an uncharacterized knowledge status. In other words: We don't know what we know from and about the data.

¹Figure from Björn Schembera's doctoral thesis, doi:10.18419/opus-11028, **2019**. ²B. Schembera, J. Durán, *Philos. Technol.* **33**: 93–115, doi:10.1007/s13347-019-00346-x, **2019**.

are dark - and useless.

Problem and idea behind epistemic metadata

Epistemic metadata are the information that **establishes the knowledge status** of data or digital objects.¹

Questions we must answer to establish the knowledge status:

- a) "what knowledge claim φ has been formulated?,"
- b) "where do the data and the claim come from?" (provenance),
- c) "what validity claim was made about φ ?,"
- d) "why should we accept any of this?" (grounding).

Key epistemic metadata items are the **knowledge claims** made based on data, their **provenance**, **validation** and **reproducibility**, and **epistemic grounding**.

¹«Documentation of epistemic metadata by a mid-level ontology of cognitive processes», in *Proc. JOWO 2022*, CEUR *vol.* **3249**: *p. 2 (CAOS)*, CEUR-WS, **2022**.

The first stage of the case study

Example: The work by Guevara et al.¹ (2020) was considered at both stages.^{2, 3}

¹G. Guevara Carrión, R. Fingerhut, J. Vrabec, "Fick diffusion coefficient matrix of a quaternary liquid mixture by molecular dynamics", J. Phys. Chem. B **124**(22): 4527–4535, doi:10.1021/acs.jpcb.0c01625, **2020**.

²M. T. Horsch, B. Schembera, «Epistemic metadata in molecular modelling: First-stage case-study report (10 cases)», Inprodat technical report 2023-A, doi:10.5281/zenodo.7516532, **2023**.

³M. Horsch, S. Chiacchiera, G. Guevara, M. Kohns, E. Müller, D. Šarić, S. Simon, I. Todorov, J. Vrabec, B. Schembera, «Epistemic metadata in molecular modelling: Second-stage case-study report (12 claims)», Inprodat technical report 2023-B, doi:10.5281/zenodo.7610237, **2023**.

10

Guevara et al. (2020) paper:¹ First-stage analysis²

Question: What is a good methodology for obtaining Fick diffusion coefficients in multicomponent mixtures by [equilibrium molecular dynamics] simulation?

Object of research: The object of research is the Fick diffusion coefficient matrix as such.

Knowledge claim: [...] methodology [...] first, the explicit inclusion of a finite-size correction, where it is specifically novel that this correction is applied to the Onsager coefficients, and second, obtaining the Darken correction from [Kirkwood-Buff] integrals.

Grounding: KB part [...] validated against "the Wilson excess Gibbs energy model [...]" [...] not clear what should make us accept the finite-size methodology [...]. It yields a correction of 6% [...] whereas the "[...] following Yeh and Hummer would have led to corrections of around 15%." It is based on a linear regression in $N^{-1/3}$ [...] ad hoc fit.

¹G. Guevara Carrión, R. Fingerhut, J. Vrabec, «Fick diffusion coefficient matrix of a quaternary liquid mixture by molecular dynamics», *J. Phys. Chem. B* 124(22): 4527-4535, doi:10.1021/acs.jpcb.0c01625, 2020.
²M. T. Horsch, B. Schembera, «Epistemic metadata in molecular modelling: First-stage case-study report (10 cases)», Inprodat technical report 2023-A, doi:10.5281/zenodo.7516532, 2023.
³M. Horsch, S. Chiacchiera, G. Guevara, M. Kohns, E. Müller, D. Šarić, S. Simon, I. Todorov, J. Vrabec, B. Schembera, «Epistemic metadata in molecular modelling: Second-stage case-study report (12 claims)», Inprodat technical report 2023-B, doi:10.5281/zenodo.7610237, 2023.

Ontology of epistemic metadata¹

¹OWL implementation under http://www.molmod.info/semantics/pims-ii.ttl

Ontology of epistemic metadata^{1, 2}

Peircean semiotics is applied to the description of cognitive processes, e.g., consider a process in which dataset δ is analysed, yielding knowledge claim φ :

- The data δ are about some research question q.
 So δ is a representamen for q; it has the role of the sign.
- The research question q is the **object** of the semiosis.
- As an outcome of the semiosis, claim φ is obtained, which is a new representamen for q, the **interpretant**.

The part of the PIMS-II ontology that deals with Peircean semiotics is also axiomatized in first-order logic,¹ in addition to the OWL implementation.²

C. S. Peirce

(i.e., a Peircean semiosis)

¹«Mereosemiotics: Parts and signs», in *Proc. JOWO 2021 (FOUST)*, **2021**. ²OWL implementation under http://www.molmod.info/semantics/pims-ii.ttl

Noregs miljø- og biovitskaplege universitet

Domain and background First stage and an ontology Second stage and grounding

Knowledge claim (KC), including the provenance

«Researcher *a* did κ and found φ (and thus claims to know φ).»

 \rightarrow Therefore, when research process *κ* is carried out, it <u>can</u> lead to outcome *φ*.

Philosophy@HLRS SAS23 30. november 2023

Materialteori og -informatikk

Grounding as implemented in PIMS-II (so far)

Peircean semiotics

the semiosis, a process by which a new representamen, the interpretant, is created

Each cognitive step starts from one representation relation, e.g., Rso, and creates a new one, Rs'o.

The successor step reuses *Rs'o* and creates the next relation, *Rs"o*.

Cognitive process (example):

- First, experimental data s for material o are used to parameterize a model, obtaining model s'.
- Then, a simulation is done using model s', yielding the simulation result s" (which also represents o).

Research workflows as cognitive processes:¹

¹«Mereosemiotics: Parts and signs», in Proc. JOWO 2021 (FOUST), 2021.

Guevara et al. (2020) claims:¹ Second-stage analysis²

Interviews were done with the authors; *e.g.*, on 24th January 2023, two papers, among them Guevara *et al.*¹ (2020) were discussed in a 70-minutes meeting. Two of the three authors participated (Gabriela Guevara and Jadran Vrabec).

«Why is it knowledge?

- Yeh & Hummer instead use a semiempirical correlation, relying on all sorts of properties, working with the end result which *D*.
- The new method is formally much simpler, relying only on *N*, and it works with the underlying quantity *L* which is more fundamental, rather than with the end outcome *D*.
- Also, linear behaviour of D in 1/N³ was already claimed before by others, and not only for D, it is something like "community shared understanding". In particular, Yeh-Hummer also has 1/N³ in it.

Validation:

• Is it better than Yeh-Hummer? Really such a validation still needs to be done.»

¹G. Guevara Carrión, R. Fingerhut, J. Vrabec, «Fick diffusion coefficient matrix of a quaternary liquid mixture by molecular dynamics», *J. Phys. Chem. B* 124(22): 4527–4535, doi:10.1021/acs.jpcb.0c01625, 2020.
 ²M. Horsch, S. Chiacchiera, G. Guevara, M. Kohns, E. Müller, D. Šarić, S. Simon, I. Todorov, J. Vrabec, B. Schembera, «Epistemic metadata in molecular modelling: Second-stage case-study report (12 claims)», Inprodat technical report 2023-B, doi:10.5281/zenodo.7610237, 2023.

Guevara et al. (2020) claims:¹ Second-stage analysis²

Interviews summarized in the second-stage report,² with two claims per paper.

Selected knowledge claims from the paper:

- 1. A novel finite-size correction methodology for the phenomenological diffusion coefficient matrix **L** based on linear extrapolation over $1/N^3$ to the limit $1/N^3 \rightarrow 0$ is proposed and successfully used to calculate **D**.
- 2. The Fick diffusion coefficient matrix **D** of the considered mixture has the values given in Table 1 of the paper under the conditions specified there.
 - d The novel method looks preferable or more plausible as it exhibits what is typically seen in the community as theoretical virtues: <u>First</u>, Yeh and Hummer [21] use a semiempirical correlation relying on multiple properties, while the novel method is formally much simpler, relying only on N. <u>Second</u>, the Yeh-Hummer method operates on the end result **D**, whereas the novel method operates on the intermediate result **L** that directly experiences the finite-size limitation in the molecular simulation.

¹G. Guevara Carrión, R. Fingerhut, J. Vrabec, «Fick diffusion coefficient matrix of a quaternary liquid mixture by molecular dynamics», *J. Phys. Chem. B* 124(22): 4527–4535, doi:10.1021/acs.jpcb.0c01625, 2020.
 ²M. Horsch, S. Chiacchiera, G. Guevara, M. Kohns, E. Müller, D. Šarić, S. Simon, I. Todorov, J. Vrabec, B. Schembera, «Epistemic metadata in molecular modelling: Second-stage case-study report (12 claims)», Inprodat technical report 2023-B, doi:10.5281/zenodo.7610237, 2023.

Type-1 and Type-2 grounding

Type-1 and Type-2 notions inspired by Marr.^{1, 2}

¹D. Marr, Artificial Intelligence **9**(1): 37-48, doi:10.1016/0004-3702(77)90013-3, **1977**.

²«Documentation of epistemic metadata by a mid-level ontology of cognitive processes», in *Proc. JOWO 2022*, CEUR *vol.* **3249**: p. 2 (CAOS), CEUR-WS, **2022**.

Type-1 and Type-2 grounding

Type-1 and Type-2 notions inspired by Marr.^{1, 2}

Type-1 The results' validity is <u>not</u> grounded in the way the results were obtained.	<i>Typical:</i> Mathematical proof in statistical mechanics for a theoretical framework with widely accepted definitions and axioms.	<i>Case study example:</i> Fingerhut <i>et al.</i> introduce a method based on Kirkwood-Buff integration (building on previous theoretical work by Ben Naim)
Type-2 The provenance of the results tells that they are valid.	 Case study example: Šarić et al. argue: We are using ion models that worked accurately before. It was shown before that ion models designed for one water model still perform accurately for another water model. Therefore we can carry over the ion models designed for SPC/E water to another water model, namely, TIP4P/ε. 	

¹D. Marr, Artificial Intelligence **9**(1): 37-48, doi:10.1016/0004-3702(77)90013-3, **1977**.

²«Documentation of epistemic metadata by a mid-level ontology of cognitive processes», in *Proc. JOWO 2022*, CEUR *vol.* **3249**: *p. 2 (CAOS)*, CEUR-WS, **2022**.

Normative grounds and reliabilism

Type-1	<i>Typical:</i> Mathematical proof
The results' validity	in statistical mechanics for a
is not grounded in	theoretical framework with
the way the results	widely accepted definitions
were obtained.	and axioms.
Type-2 The provenance of the results tells that they are valid.	Reliability of process <i>m</i> means that «If S's believing <i>p</i> at <i>t</i> results from <i>m</i> , then S's belief in <i>p</i> at <i>t</i> is justified». ¹

Normative grounds and reliabilism

	« evidence supporting trustworthiness cannot be complete » ¹ trust	« reliance is compatible with - ideally - the complete evidence » ¹ reliance
Type-1 The results' validity is not grounded in the way the results were obtained.	<i>Typical:</i> Mathematical proof in statistical mechanics for a theoretical framework with widely accepted definitions and axioms.	Case study example: Guevara et al. argue: Our new finite-size correction is better because it is more simple and because it is applied to the directly computed quantity L.
Type-2 The provenance of the results tells that they are valid.	Case study example: Chatwell and Vrabec argue: It is OK to use a cutoff radius of 5.5σ for the LJ potential, since this was done in three cited works from the literature.	<i>Typical:</i> We used a model, method, and simulation code validated in the past and - usually - very accurate. (process reliabilism)

See reference ontology of trust (ROT) by Baratella et al.¹

¹Baratella *et al.*, «The many facets of trust», to appear in *Proceedings of FOIS 2023*.

Normative grounds and reliabilism

	trust	reliance
Type-1 The results' validity is not grounded in the way the results were obtained.	<i>Typical:</i> Mathematical proof in statistical mechanics for a theoretical framework with widely accepted definitions and axioms.	Schema: A new theory is more reliable because it is simpler, covers more phenomena, or represents underlying physics. (theoretical virtues)
Type-2 The provenance of the results tells that they are valid.	Case study example: Chatwell and Vrabec argue: It is OK to use a cutoff radius of 5.5σ for the LJ potential, since this was done in three cited works from the literature.	<i>Typical:</i> We used a model, method, and simulation code validated in the past and - usually - very accurate. (process reliabilism)

Schema: Grounding of knowledge claims

Sample: Bowskill et al., Chatwell & Vrabec, Fingerhut et al., Guevara et al., Stephan & Hasse (long-range).

 $b^{(2)}$

 $a_0^{(2)}$

 $a_1^{(2)}$

 $a_{n_2}^{(2)}$

Norwegian University of Life Sciences

Theoretical virtues

Theoretical virtues often oppose each other.

Simplicity favours few elements and few model parameters.

b(0)

 x_0

 x_1

 x_2

 $\boldsymbol{x_n}$

 $b^{(1)}$

 $a_0^{(1)}$

 $a_1^{(1)}$

 $a_2^{(1)}$

 $a_{n_1}^{(1)}$

Neural networks are lacking in virtue, yet some people use them.

¹Figure sources: MolMod DB (link) and Anna Jenul's doctoral thesis (link).

Philosophy@HLRS SAS23

30th November 2023

 \boldsymbol{y}

Theoretical virtues

Theoretical virtues found in the case study:

- Alignment of representations, qualitative reflection of underlying physics
 - Chatwell & Vrabec: Relaxation model based on an exponential decay as deduced theoretically; functional form of the EOS made plausible by theory.
 - Zhu and Müller note that ML models are devoid of any physics-based insights.
- **Coverage** or good sampling of the phenomenon's state space
 - Bowskill et al.: Test cases are representative of real world problems.
 - Stephan and Hasse: Selected mixtures and conditions are representative.
- Mechanism or explainability of dependencies
 - Guevara et al.: Finite-size effect on immediate result (L), not end result (D).
- Simplicity
 - Guevara *et al.*: Finite-size correction depends on one quantity only (the size).

Philosophy@HLRS SAS23

30th November 2023

Challenges at documenting grounding

It is hard to differentiate between grounding in virtues or in process reliabilism.

• Model s' is better than s. It is equally accurate with fewer parameters,

Universität Stuttgart

- ... so we should prefer it because it is **more simple**.
- ... so, from experience, its extrapolations are more reliable.
 - » Nobody writes either of the above explicitly.

When digitalizing research data, we should respect that:

- Research is a **social process** among humans;
- scientific communication is human communication;
- it can rely on pragmatics no need say every small thing explicitly;
- epistemic grounding is usually not spelled out in detail (or at all);
 we would often need to impute an interpretation onto the authors.

The ontology's aim is: Help people make more explicit statements if they want.

Philosophy@HLRS SAS23

30th November 2023

Noregs miljø- og biovitskaplege universitet

Domain and background First stage and an ontology Second stage and grounding

Philosophy@HLRS SAS23

30. november 2023

Materialteori og -informatikk

Norges miljø- og biovitenskapelige universitet

Case study on epistemic [®] metadata in molecular modelling

Martin Horsch,^{1, 2} Silvia Chiacchiera,² and Björn Schembera³

¹Norwegian Univ. Life Sciences, Faculty of Science and Technology, Ås, Norway ²UKRI STFC Daresbury Laboratory, Scientific Computing Department, Daresbury, UK ³Univ. Stuttgart, Institute of Applied Analysis and Numerical Simulation, Stuttgart, Germany

Fakultet for realfag og teknologi

Forskergruppe materialteori og -informatikk