

Molekulardynamische Simulation von Phasenübergängen und Strömungen in nanoskaligen Kanälen

Teilprojekt A.1

Martin Horsch, Jadran Vrabec, Hans Hasse

11. Oktober 2007

Seminar des DFG-Sonderforschungsbereichs 716

Gliederung

Phasenübergänge

- Nanoskalige Tropfen
- Oberflächenspannung gekrümmter Phasengrenzflächen
- Ergebnisse molekularer Simulationen
- Strömungen und nanoskalige Kanäle
 - Erweiterung eines Molekulardynamikprogramms
 - Szenario: Couetteströmung von CO₂ durch Graphitplatten

Nanoskalige Tropfen

Tropfen im Gleichgewicht mit übersättigtem Dampf

Äquilibrierung von Flüssigkeit und Dampf

Einsetzung eines Tropfens in den Dampf

Simulation des kanonischen Ensemble

Modellierung realer Fluide

≻Methan (LJ)
≻Ethan (2CLJQ)
≻CO₂ (2CLJQ)

Normaldruckprofil

Orthogonal zur Phasengrenzfläche wirkender Druck

--- Gibbs-Absorptionsradius

Laplace-Radius

Lennard-Jones-Fluid, bei $r_{\rm c}$ = 2,5 σ stetig abgeschnittenes Potential

SFB

i t t

Oberflächenspannung des LJ-Fluids

Berechnung der Oberflächenspannung aus dem Normaldruckprofil:

<u>www.itt.uni-stuttgart.de</u>

Kondensation: Bestimmung der kritischen Größe

Anwendung auf Nukleation im übersättigten Dampf

LJ-Fluid

bei $r_{\rm c}$ = 2,50 σ stetig abgeschnittenes Potential

 $T = 1,00 \ \varepsilon \ / \ k$

Falls Tropfengröße konvergiert:

... kritischer Nukleus bei T und p_{final} liegt vor!

Kritische Nuklei: Theorie und Simulation

Universität Stuttgart

Aktivierung der Kondensation:

Bildung eines kritischen Nukleus aus ι^* Molekülen

Lennard-Jones-Fluid, bei $r_{\rm c}$ = 2,5 σ stetig abgeschnittenes Potential

Nukleationsraten aus Clusterstatistiken

- **Experiment:** Anzahl der detektierbaren Tropfen pro Volumen und Zeit
 - maximal messbar ca. 0,0001 mol / (I · s)
- Theorie: Kollision kritischer Nuklei mit einzelnen Molekülen
- Simulation: Anzahl der «relativ großen» Nuklei pro Volumen und Zeit
 - aufgrund begrenzter Systemgröße und Laufzeit mindestens 1000 mol / (I · s)

Yasuoka und Matsumoto (1998):

$$J(t) = \lim_{V \to \infty} \max_{t > t_0} \frac{d}{V dt} \sum_{j \ge t} N(j)$$

Für hinreichend große ι ist $J(\iota)$ bei gleichbleibendem Druck konstant.

Nukleationsraten für Methan und CO₂

Simulation nanoskaliger Kanäle: Projektziele

- > Wandstruktur der Kanäle aus Kohlenstoff und Silizium
 - Ebene Geometrie: z. B. Graphit und Graphen
 - Zylindrische Geometrie: z.B. Kohlenstoffnanoröhren
 - In erster Förderperiode charakteristische Längen bis zu 100 nm
- > Durch gleichförmige Beschleunigung gesteuerte Strömungen
 - Poiseuilleströmung: zusätzliche Kraft wirkt auf das Fluid
 - Couetteströmung: zusätzliche Kraft wirkt auf den Festkörper
- Erweiterung des Molekulardynamik-Programms mardyn
 - ... um das molekulare Modell f
 ür die Wand
 - ... um die Regelung von Strömungssimulationen

Tersoffpotential für C und Si

Mehrkörperpotential in der Form eines Paarpotentials:

$$u_{ij} = c(r_{ij}) \cdot (Ae^{-\lambda r_{ij}} - b_{ij}Be^{-\mu r_{ij}})$$

Stetige **Ausblendung** im Intervall $R \le r_{ij} \le S$ durch den Cutoffterm:

$$c(r_{ij}) = \frac{1}{2} \left(1 + \cos\left(\frac{\pi(r_{ij} - R)}{S - R}\right) \right) \approx \left(\frac{S - r_{ij}}{S - R}\right)^2 \cdot \left(3 - \frac{2(S - r_{ij})}{S - R}\right)$$

... für Kohlenstoff ist R = 1,8 Å und S = 2,1 Å.

Mehrkörperterm: Der **Attraktionskoeffizient** b_{ij} berücksichtigt die Bindungswinkel θ_{ijk} zu benachbarten Zentren k.

Simulationen mit dem Tersoffpotential

> Integrator

- Abschneideradius S des Tersoffpotentials ist sehr kurz
- Exponentielle Terme f
 ür Attraktion und Repulsion
- Zeitschritt muss auf etwa 1 fs herabgesetzt werden

Nachbarschaftslisten

- Tersoffpotential betrachtet alle benachbarten Tripel. Deshalb:
 - 1) in *bins* mit Kantenlängen der Größenordnung von $r_{\rm c}$ einsortieren
 - 2) Paarpotentiale auswerten, Liste erstellen
 - 3) Tersoffpotential auswerten
- Fluid-Wand-Wechselwirkung

Implementierung der Strömungssimulation

Ziel: Geschwindigkeit $\vec{v}_{\rm Ziel}$ bei möglichst stabiler Beschleunigung \vec{a}

SFB

Couetteströmung von CO₂ zwischen Graphitplatten

Die mittlere Graphitplatte soll in z-Richtung bewegt werden.

<u>www.itt.uni-stuttgart.de</u>

Bewegung der Graphitplatte

Plattenabstand: 100 nm

Platte explodiert!

T = 290 K, N = 64000, $\rho(CO_2) = 3,90$ mol/l T = 230 K, N = 500000, $\rho(CO_2) = 0,265$ mol/l

stabiler Verlauf

Profil des eingeschlossenen CO₂-Dampfes

Zusammenfassung

- Die Simulationsergebnisse f
 ür Nukleationsraten und die Gr
 öße des kritischen Nukleus stimmen qualitativ mit der klassischen Nukleationstheorie
 überein.
- Das MD-Programm mardyn wurde um das Festkörpermodell von Tersoff und um eine Strömungsregelung erweitert.
- MD-Simulationen von Couette- und Poiseuilleströmungen mit Kanaldurchmessern von 100 nm sind bereits jetzt möglich.
- Fluid-Wand-Wechselwirkung muss verbessert werden.