

Inauguraldisputation

Molekulare Thermodynamik gekrümmter Grenzflächen von Fluiden

Universität Paderborn, Fakultät für Maschinenbau, 10. September 2010

Martin HORSCH

THERMODYNAMIK UND ENERGIETECHNIK PROF. DR.-ING. HABIL. JADRAN VRABEC

Nanoskalige Oberflächeneffekte

SCHAPOTSCHNIKOW et al.

MD-Simulation eines Nukleationsprozesses

YASUOKA und MATSUMOTO (1998):

Anzahl der entstehenden Tropfen mit > Molekülen pro Volumen und Zeit

Ansatz:

Bestimme eine Rate J_{ℓ} für verschiedene Werte von ℓ .

$$(\ell >> \iota^*) \Rightarrow (J_\ell \approx J)$$

Schwäche des Ansatzes:

Im Laufe der Simulation sinkt die Übersättigung S.

INSTITUT FÜR VERFAHRENSTECHNIK

ThEt

Nukleationsrate nach YASUOKA und MATSUMOTO

Thermodynamik und Energietechnik Prof. Dr.-Ing. Habil. Jadran Vrabec

INSTITUT FÜR Verfahrenstechnik

Einfluss eines inerten Trägergases

Typisches Szenario:

- Dampf enthält k Komponenten
- Flüssigkeit mit $x_i \approx 1$ für ein *i*
- Trägergas: k 1 Komponenten

Trägergaseffekt (WEDEKIND et al.):

- Thermalisierung $\rightarrow J$ steigt
- "Arbeit des Tropfens" $\rightarrow J$ sinkt

— Klassische Theorie / WEDEKIND et al.

△ *ℓ* = 50 □ *ℓ* = 100 ■ *ℓ* = 150

ThEt

INSTITUT FÜR VERFAHRENSTECHNIK

Freie Bildungsenergie nanoskaliger Tropfen

Großkanonische Simulation übersättigter Dämpfe

Grand canonical molecular dynamics (GCMD) nach CIELINSKI:

- Vorgabe von μ , V und T
- Einsetzung und Herausnahme von Teilchen abwechselnd mit kanonischen MD-Schritten:

Stationäre Simulation von Nukleationsvorgängen

INSTITUT FÜR VERFAHRENSTECHNIK

Simulationsergebnisse mit mcdonaldschem Dämon

Gekrümmte Phasengrenzen im Gleichgewicht

 $\Delta p = \frac{2\gamma}{\gamma}$ formale Interpretation: Definition des LAPLACE-Radius $R_{\rm I}$

 $\Delta p = \frac{2\gamma}{2}$

Gekrümmte Phasengrenzen im Gleichgewicht

formale Interpretation: Definition des LAPLACE-Radius R_{L}

PROF. DR.-ING. HABIL. JADRAN VRABEC

Kanonische Simulation gekrümmter Grenzflächen

Oberflächenspannung: Analyse des Drucktensors

THERMODYNAMIK UND ENERGIETECHNIK PROF. DR.-ING. HABIL. JADRAN VRABEC

INSTITUT FÜR Verfahrenstechnik

Flüssigkeit in Kontakt mit einer Wand

ThEt

Fluiddynamik in Nanokanälen

ThEt

Phasengrenzfläche in Kontakt mit einer Wand

ThEt

Kontaktwinkel: Molekulare Simulation

Ansatz:

LJTS-Fluid, allgemeines Wandmodell Dispersionsenergie $\varepsilon_{fw} = \zeta \varepsilon$ Gleichgewichtszustand:

Meniskus ist ein Zylindersegment (Kriterium: mittlere Dichte)

Kontaktwinkel: Simulationsergebnisse

Qualitative Beobachtungen:

- Der Wertebereich, für den sich ein Kontaktwinkel ergibt, ist relativ eng.
- Der Wert von ε , für den $\Delta \gamma_s = 0$ und damit $\theta = 90^\circ$ ist, hängt kaum von *T* ab.
- Ein Übergang 1. Ordnung zur vollständigen Benetzung bzw. Trocknung erfolgt bei hohen Temperaturen.
- In erster Näherung ist $\Delta \gamma_s \sim (\rho^{-} \rho^{-}) \Delta \varepsilon$.

HORSCH, HEITZIG, DAN, HARTING, HASSE, VRABEC, Langmuir 26: 10913.

Zusammenfassung

- Im kanonischen Ensemble sind einzelne Tropfen und Gasblasen stabil.
- Die Grenzflächendicke hängt signifikant von der Temperatur und der Krümmung ab. Die Тоцмам-Länge ist für Tropfen generell positiv.
- Durch GCMD mit dem mcdonaldschen Dämon kann die Nukleation in übersättigten Dämpfen stationär simuliert werden.
- Die **klassische Nukleationstheorie** führt zu akzeptablen Ergebnissen für die untersuchten Systeme. Aber: $\gamma(R)$ bleibt dabei unberücksichtigt.
- Für planare Poiseuille-Strömungen gilt das Gesetz von DARCY bis hin zu Kanaldurchmessern auf der molekularen Längenskala.
- Der Einfluss der Dispersionsenergie auf den Kontaktwinkel wurde für Systeme ohne elektrostatische Wechselwirkungen charakterisiert.