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Definition.Let � = (P;T;F;W;m0) be a Petri net su
h that P is the set ofpla
es, T the set of transitions, F the set of ar
s and W : A! N itsweight fun
tion. M : P! N is the set of markings and m0 2M theinitial marking on �. The maximal number of input or output ar
sthat a pla
e p 2 P 
an have is designated 
F.Let t 2 T. We write m !t i� the transition t 2 T is enabled atthe marking m. Let the marking after the �ring of t be m 0. Forthis we write m!t m 0. Su
h a triple (m; t;m 0) is 
alled a semanti
transition.The state spa
e of � is R(�) = (M;T;�;m0) with the set of se-manti
 transitions � = f(m; t;m 0) 2 M � T �M j m !t m 0g. In astate spa
e graph, verti
es represent markings and edges representsemanti
 transitions.



exploding state spa
esA typi
al veri�
ation problem 
onsists in proving whether a Petrinet has a deadlo
k.
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A net 
omposed of n parallel nets, ea
h with k rea
hable 
ompo-nents, has a total of kn states.



In our example net, we 
an redu
e all �ring sequen
es to onewithout missing the deadlo
k:
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The remaining subset of T is 
alled stubborn at m
. In general,for every marking m
 rea
hed while exploring the state spa
e, wetry to eliminate as many transitions as possible.



A simple rea
hability analysis algorithm would �re all enabled tran-sitions. We hope to a
hieve a better performan
e by �ring onlythe stubborn ones.rea
hable  ;; // initfun
tion find_dl(m)rea
hable  rea
hable [ fmg;enabled  the set of enabled transitions at m;stubborn  a stubborn set at m;d  (enabled == ;);forea
h transition t in ( stubborn \ enabled ) dom'  result of firing t at m;if m' 62 rea
hable then d  ( d or find_dl(m') ) fireturn d;



The following 
ondition must hold for every stubborn set Ts � T ata marking m
.Condition D1. 8~n 2M 8t 2 Ts 8� 2 (TnTs)� :9 ~m
 2M m
 !� ~m
 !t ~n =) 9n 2Mm
 !t n!� ~nIs this property suÆ
ient? Consider the following net:
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Although a and b are a diamond, only fag is adequate as a stub-born set. By 
hoosing fbg a rea
hability analyzer would miss thedeadlo
k! We must introdu
e another 
ondition to assure that thisproblem is resolved.



Definition.Let R = (M;T;�;M0) be the state spa
e of a Petri net. Let m
 2M.Then Ts � T is dynami
ally stubborn at m
 i� it has the followingproperties:
Condition D1.8~n 2M 8t 2 Ts 8� 2 (TnTs)� :9 ~m
 2M m
 !� ~m
 !t ~n =) 9n 2Mm
 !t n!� ~n

Condition D2.9k 2 Ts 8� 2 (TnTs)� : m
 !� ~m
 =) ~m
 !kA transition is 
alled a key transition at m
 i� it quali�es as thetransition k in D2.



Lemma. Let R = (M;T;�;m0) be the original state spa
e and R 0 =(M;T;�;m0) 0 the redu
ed state spa
e. Then there is a deadlo
k inR 0 if and only if there is one in R.Proof.()) The redu
tion of state spa
e 
an't 
reate a deadlo
k, be
ausethe only marking where outgoing semanti
 transitions are removedis m
. The 
urrent marking 
an't be
ome a deadlo
k, be
ause atleast the key transition remains enabled.(() Let md be a deadlo
k that R 
an only rea
h via m
. ConditionD2 implies that after �ring a sequen
e from (TnTs)� the key tran-sition must still be enabled; thus no su
h sequen
e 
an lead fromm
 to a deadlo
k.Ea
h sequen
e that leads to a deadlo
k must therefore be of thetype m
 !�t# md with � 2 (TnTs)�; t 2 T; # 2 T�. With D1 it followsthat m
 !t�# md, a path that remains enabled in the redu
ed set.



Definition.Let R = (M;T;�;M0) be the state spa
e of a Petri net. Let m
 2M.Then Ts � T is stati
ally stubborn at m
 i� the following hold:S1. 8t 2 ft 2 Tjm
!tg : t 2 Ts =) ((�t)� � Ts)S2. 8t 2 ft 2 Tjm
 6!tg : t 2 Ts ) 9p 2 �t;m
(p) < W(p; t) : �p � TsS3. 9k 2 Ts : m
 !kThis de�nition is 
alled stati
, be
ause it only relies on informationavailable in the redu
ed state spa
e. S1 is an impli
ation of thetype: if t0 2 Ts then ft1; t2; : : : tng � TsSu
h a stru
ture 
an be represented by an impli
ation graph.Ambiguous impli
ations from S2 must be resolved at graph 
on-stru
tion time.



Find a stubborn set Ts at the initial marking m0 of this net:
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From S1 the following impli
ations follow:a 2 Ts) fb; fg � Ts; 
 2 Ts) d 2 Ts; d 2 Ts) 
 2 Ts; f 2 Ts) a 2 Ts;while S2 allows us to de
ide at graph 
onstru
tion time whether((b 2 Ts) a 2 Ts) or (b 2 Ts) f
; fg � Ts)); e 2 Ts) d 2 Tsand S3 requires that at least one k 2 Ts be enabled.



algorithms based on impli
ation graphsDepending on whi
h option an algorithm 
hooses at S2, one ofthe following impli
ation graphs is 
onstru
ted:
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aThe 
losure algorithm starts with the �rst enabled transition andthen extends the stubborn set by indu
tion in O((
F)2 jTj) � O(jTj2).In our example, this leads to the possible results:graph 1: a 2 Ts) fa;b; f g = Tsgraph 2: a 2 Ts) fa;b; f g � Ts) fa; b; 
; fg � Ts) fa; b; 
;d; fg = Ts



Strongly 
onne
ted 
omponents of a dire
ted graph (V;E) are sub-sets V 0 � V su
h that for all u; v 2 V 0 there is a path from u to vas well as vi
e versa.The maximal strongly 
onne
ted 
omponent algorithm parti-tions the impli
ation graph into sets of this type. Then it returnsthe union of one of the lowest 
omponents that 
ontain an enabledtransition and all 
omponents below, in this 
ase Ts = f
; dg:
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With a modi�ed depth �rst sear
h for �nding the strong 
om-ponents, this algorithm terminates in O(jTj2) just like the 
losurealgorithm.



Tarjan's algorithm, a modi�ed depth �rst sear
h, determines themaximal strongly 
onne
ted 
omponents of a graph in O(jVj+ jEj):dfs  0; visited  ;; // initfun
tion visit(k)visited  visited [ fkg;min  dfs; dfs  dfs+1;push k on the sta
k;forea
h node 
 of in (
hildren(k)nvisited) dom  visit(
);if m < min then min  m fi od;if min = k thenstr
on  ;;loop dopop t from the sta
k; str
on  str
on [ ftg;if t == k then break fi odoutput str
on fi;return min



partial deletion of ^^^-___-graphsIn many 
ases we 
an get a better performan
e if we relax 
onditionS1 and 
hange S3 to guarantee the key transition property.S1lax. 8t 2 ft 2 Tjm
!tg : t 2 Ts =) ((�t)� � Ts) _ (�(�t) � Ts)

S2. 8t 2 ft 2 Tjm
 6!tg : t 2 Ts ) 9p 2 �t;m
(p) < W(p; t) : �p � TsS3ext. 9k 2 Ts : m
 !k ^ (�k)� � TsThese requirements for a stubborn set 
an be represented best byan ^-_-graph with di�erent types of nodes for 
onjun
tions anddisjun
tions. This method avoids the problem of de
iding at graphgeneration time whi
h side of a disjun
tion should be a
tive.



We apply the 
hanged set of 
onditions to our example net:
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aS1lax =) if a 2 Ts then 
 2 Ts _ b 2 TsS2 =) if b 2 Ts then a 2 Ts _ f
; fg � TsS1lax =) if 
 2 Ts then b 2 Ts _ d 2 TsS1lax =) if d 2 Ts then b 2 Ts _ 
 2 TsS2 =) if e 2 Ts then d 2 TsS3ext =) Ts must 
ontain an enabled key transition k while(k = a)) fb; fg � Ts; (k = 
)) d 2 Ts(k = d)) 
 2 Ts; and (k = f)) a 2 Ts.



This 
orresponds to the following ^-_-graph:
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By disabling as many nodes as possible, the deletion algorithm�nds Ts = f
; dg, the minimal stati
ally stubborn set at m0.


