the state explosion problem

Martin Horsch

December 8, 2003



Definition.

Let TT = (P,TFFW,my) be a Petri net such that P is the set of
places, T the set of transitions, F the set of arcs and W: A — N its
weight function. M : P — N is the set of markings and my € M the
initial marking on Il. The maximal number of input or output arcs
that a place p € P can have is designated cf.

Let t € T. We write m —¢ iff the transition t € T is enabled at
the marking m. Let the marking after the firing of t be m’. For
this we write m —¢ m’. Such a triple (m,t,m’) is called a semantic
transition.

The state space of IT is R(IT) = (M, /A, my) with the set of se-
mantic transitions A = {(m,tm’) e M xTx M | m — m'}. In a
state space graph, vertices represent markings and edges represent
semantic transitions.



exploding state spaces

A typical verification problem consists in proving whether a Petri
net has a deadlock.

o a ).DL
® O ® P
L] S S
a[] b[ ] c[]

56 b

A net composed of n parallel nets, each with k reachable compo-
nents, has a total of k™ states.




In our example net, we can reduce all firing sequences to one
without missing the deadlock:

DL
......... ).
,/YA c A
.'_’ ...... '--). :
A TA
: SRR IR
.Y b v
I,” a ,',
mo. > ©®

The remaining subset of T is called stubborn at m¢. In general,
for every marking m¢ reached while exploring the state space, we
try to eliminate as many transitions as possible.



A simple reachability analysis algorithm would fire all enabled tran-
sitions. We hope to achieve a better performance by firing only
the stubborn ones.

reachable < (; // init

function find_dl(m)
reachable ¢« reachable U {m};
enabled < the set of enabled transitions at m;
stubborn - a stubborn set at m;
d < (enabled == 0);
foreach transition t in ( stubborn N enabled ) do
m’ < result of firing t at m;
if m> € reachable then d « ( d or find_dl(m’) ) fi

return d;



The following condition must hold for every stubborn set T C T at
a marking mec.

Condition DI. vii e M YVt € Ts Vo € (T\T)*:
AMceM Mme 2gMme 4N =— dINEMme 2N —gn

Is this property sufficient? Consider the following net:

mg e S “—>»e DL

NN\ - @—0—0-
G0 0—1—0=1—0

Although a and b are a diamond, only {a} is adequate as a stub-
born set. By choosing {b} a reachability analyzer would miss the
deadlock! We must introduce another condition to assure that this
problem is resolved.




Definition.

Let R= (M, T,A / My) be the state space of a Petri net. Let mc € M.
Then Ts C T is dynamically stubborn at mc iff it has the following
properties:

Condition DJ.
vihe M Vte Ts Vo e (T\Tg)*:
AMceM Me 2gMmMe 4N =— dINEMme =N —gn

Condition D2.
dk e Ts Voe (T\Tg)*: me¢ =2 Me = mMec —k

A transition is called a key transition at mc iff it qualifies as the
transition k in 2.



Zemma. Let R = (M, T,A,my) be the original state space and R’ =
(M, T,A,my)’ the reduced state space. Then there is a deadlock in
R’ if and only if there is one in R.

Proof.

(=) The reduction of state space can’t create a deadlock, because
the only marking where outgoing semantic transitions are removed
IS m¢c. The current marking can’t become a deadlock, because at
least the key transition remains enabled.

(&) Let my be a deadlock that R can only reach via mc. Condition
2 implies that after firing a sequence from (T\Ts)* the key tran-
sition must still be enabled; thus no such sequence can lead from
mce to a deadlock.

Each sequence that leads to a deadlock must therefore be of the
type me — g9 Mg With o € (T\Ts)*, te€ T, & € T*. With ®I it follows
that m¢ —59 Mg, @ pPath that remains enabled in the reduced set.



Definition.
Let R= (M, T,A / M;y) be the state space of a Petri net. Let mc € M.
Then Ts C T is statically stubborn at m¢ iff the following hold:

Sl vte{teTime—¢}: teTs = ((et)e CTs)
82. YVt € {t c T|mc 7L)t}2 t e Ts = EhD c Ot,mc(p) < W(p)t) . op g TS
S3. Jk € Ts: me —k

This definition is called static, because it only relies on information
available in the reduced state space. SI is an implication of the

type:

if tO E Ts then {t],tz, . tn} g Ts

Such a structure can be represented by an implication graph.
Ambiguous implications from S2 must be resolved at graph con-
struction time.



Find a stubborn set Ts at the initial marking my of this net:

From SI the following implications follow:

acTg=>{b,flCTs, ceTg=>deTs, deTg=ceTs, feTg=ae T,
while S2 allows us to decide at graph construction time whether

((b€T3:>a€Ts) or (bETs#{C,f}CTs)), e€T3:>d€Ts
and S3 requires that at least one k € T; be enabled.



algorithms based on implication graphs

Depending on which option an algorithm chooses at S2, one of
the following implication graphs is constructed:

I:Id CDde
f|:|<—|:|b

- N
D\\ZDQD ; i ;

The closure algorithm starts with the first enabled transition and
then extends the stubborn set by induction in O((cp)? [T]) € O(|T2).
In our example, this leads to the possible results:

graph 1: a € Ts={a,b,f} =T
graph 2: ac TS é{aabai}g TS é{chb)Q)f}g TS :>{a>bac>daf}:



Strongly connected components of a directed graph (V,E) are sub-
sets V/ C V such that for all u,v € V/ there is a path from u to v
as well as vice versa.

The maximal strongly connected component algorithm parti-
tions the implication graph into sets of this type. Then it returns
the union of one of the lowest components that contain an enabled
transition and all components below, in this case Ts = {c, d}:

L——=l (a,b, f) (e}
= b,

t[ ] «e——=[]v

S N

With a modified depth first search for finding the strong com-
ponents, this algorithm terminates in O(|T|?) just like the closure
algorithm.




Tarjan’s algorithm, a modified depth first search, determines the
maximal strongly connected components of a graph in O(|V|+ |E|):

dfs < 0; visited <« (; // init

function visit (k)
visited « visited U {k};
min ¢ dfs; dfs ¢ dfs+1;
push k on the stack;
foreach node ¢ of in (children(k)\visited) do
m  visit(c);
1f m < min then min < m fi od;
if min = k then
strcon «— 0(;
loop do
pop t from the stack; strcon « strcon U {t};
if t == k then break fi od
output strcon fi;
return min



partial deletion of A-V-graphs

In many cases we can get a better performance if we relax condition
SI and change S3 to guarantee the key transition property.

Sl . Vte{teTime =¢): teTs = ((ot)e CTs) V (efot) C Ts)

S2. VtelteTime A¢): teTs = Ip € ot, me(p) < W(p,t) : ep C T
836):12‘ dk € Tg: me —k VAN (.k). C Ts

These requirements for a stubborn set can be represented best by
an /A\-V-graph with different types of nodes for conjunctions and
disjunctions. This method avoids the problem of deciding at graph
generation time which side of a disjunction should be active.



We apply the changed set of conditions to our example net:

| :
O[]« @—;EI

4 v 2
0 o—07 O
[ A !
Co—U—® il
Sy, — ifaclsthencels Vbels
S2 — ifbeTsthenaecTs V {c,f CTs
Sl — ifcelsthenbels V delTs
Sl — ifdeTsthenbeTs V ceTs
S2 — ifecTsthendeT;
S3yt = Ts must contain an enabled key transition k while

(k:a):>{b,f}CTs, (k:C):>d€TS
(k:d):>C€Ts, and (k:f):>(1€Ts



This corresponds to the following A-V-graph:

By disabling as many nodes as possible, the deletion algorithm
finds Ts = {c, d}, the minimal statically stubborn set at m,.



