
the state explosion problemMartin HorshDeember 8, 2003

Definition.Let � = (P;T;F;W;m0) be a Petri net suh that P is the set ofplaes, T the set of transitions, F the set of ars and W : A! N itsweight funtion. M : P! N is the set of markings and m0 2M theinitial marking on �. The maximal number of input or output arsthat a plae p 2 P an have is designated F.Let t 2 T. We write m !t i� the transition t 2 T is enabled atthe marking m. Let the marking after the �ring of t be m 0. Forthis we write m!t m 0. Suh a triple (m; t;m 0) is alled a semantitransition.The state spae of � is R(�) = (M;T;�;m0) with the set of se-manti transitions � = f(m; t;m 0) 2 M � T �M j m !t m 0g. In astate spae graph, verties represent markings and edges representsemanti transitions.

exploding state spaesA typial veri�ation problem onsists in proving whether a Petrinet has a deadlok.

b ca

0m

DL

a

b
c

c c

c

a

a
b

b

b
a

A net omposed of n parallel nets, eah with k reahable ompo-nents, has a total of kn states.

In our example net, we an redue all �ring sequenes to onewithout missing the deadlok:
0m

DL

a

c

b

The remaining subset of T is alled stubborn at m. In general,for every marking m reahed while exploring the state spae, wetry to eliminate as many transitions as possible.

A simple reahability analysis algorithm would �re all enabled tran-sitions. We hope to ahieve a better performane by �ring onlythe stubborn ones.reahable ;; // initfuntion find_dl(m)reahable reahable [fmg;enabled the set of enabled transitions at m;stubborn a stubborn set at m;d (enabled == ;);foreah transition t in (stubborn \ enabled) dom' result of firing t at m;if m' 62 reahable then d (d or find_dl(m')) fireturn d;

The following ondition must hold for every stubborn set Ts � T ata marking m.Condition D1. 8~n 2M 8t 2 Ts 8� 2 (TnTs)� :9 ~m 2M m !� ~m !t ~n =) 9n 2Mm !t n!� ~nIs this property suÆient? Consider the following net:
0m

a

a

DL
c

b b

d d

a c

b d

Although a and b are a diamond, only fag is adequate as a stub-born set. By hoosing fbg a reahability analyzer would miss thedeadlok! We must introdue another ondition to assure that thisproblem is resolved.

Definition.Let R = (M;T;�;M0) be the state spae of a Petri net. Let m 2M.Then Ts � T is dynamially stubborn at m i� it has the followingproperties:
Condition D1.8~n 2M 8t 2 Ts 8� 2 (TnTs)� :9 ~m 2M m !� ~m !t ~n =) 9n 2Mm !t n!� ~n

Condition D2.9k 2 Ts 8� 2 (TnTs)� : m !� ~m =) ~m !kA transition is alled a key transition at m i� it quali�es as thetransition k in D2.

Lemma. Let R = (M;T;�;m0) be the original state spae and R 0 =(M;T;�;m0) 0 the redued state spae. Then there is a deadlok inR 0 if and only if there is one in R.Proof.()) The redution of state spae an't reate a deadlok, beausethe only marking where outgoing semanti transitions are removedis m. The urrent marking an't beome a deadlok, beause atleast the key transition remains enabled.(() Let md be a deadlok that R an only reah via m. ConditionD2 implies that after �ring a sequene from (TnTs)� the key tran-sition must still be enabled; thus no suh sequene an lead fromm to a deadlok.Eah sequene that leads to a deadlok must therefore be of thetype m !�t# md with � 2 (TnTs)�; t 2 T; # 2 T�. With D1 it followsthat m !t�# md, a path that remains enabled in the redued set.

Definition.Let R = (M;T;�;M0) be the state spae of a Petri net. Let m 2M.Then Ts � T is statially stubborn at m i� the following hold:S1. 8t 2 ft 2 Tjm!tg : t 2 Ts =) ((�t)� � Ts)S2. 8t 2 ft 2 Tjm 6!tg : t 2 Ts) 9p 2 �t;m(p) < W(p; t) : �p � TsS3. 9k 2 Ts : m !kThis de�nition is alled stati, beause it only relies on informationavailable in the redued state spae. S1 is an impliation of thetype: if t0 2 Ts then ft1; t2; : : : tng � TsSuh a struture an be represented by an impliation graph.Ambiguous impliations from S2 must be resolved at graph on-strution time.

Find a stubborn set Ts at the initial marking m0 of this net:
f

2

3

c

d

b

e
a

0m

DL

DL

DL

From S1 the following impliations follow:a 2 Ts) fb; fg � Ts; 2 Ts) d 2 Ts; d 2 Ts) 2 Ts; f 2 Ts) a 2 Ts;while S2 allows us to deide at graph onstrution time whether((b 2 Ts) a 2 Ts) or (b 2 Ts) f; fg � Ts)); e 2 Ts) d 2 Tsand S3 requires that at least one k 2 Ts be enabled.

algorithms based on impliation graphsDepending on whih option an algorithm hooses at S2, one ofthe following impliation graphs is onstruted:
c

bf

e

d

a

c

e

d

bf

aThe losure algorithm starts with the �rst enabled transition andthen extends the stubborn set by indution in O((F)2 jTj) � O(jTj2).In our example, this leads to the possible results:graph 1: a 2 Ts) fa;b; f g = Tsgraph 2: a 2 Ts) fa;b; f g � Ts) fa; b; ; fg � Ts) fa; b; ;d; fg = Ts

Strongly onneted omponents of a direted graph (V;E) are sub-sets V 0 � V suh that for all u; v 2 V 0 there is a path from u to vas well as vie versa.The maximal strongly onneted omponent algorithm parti-tions the impliation graph into sets of this type. Then it returnsthe union of one of the lowest omponents that ontain an enabledtransition and all omponents below, in this ase Ts = f; dg:

c

e

d

bf

a

{c, d}

{a, b, f} {e}

With a modi�ed depth �rst searh for �nding the strong om-ponents, this algorithm terminates in O(jTj2) just like the losurealgorithm.

Tarjan's algorithm, a modi�ed depth �rst searh, determines themaximal strongly onneted omponents of a graph in O(jVj+ jEj):dfs 0; visited ;; // initfuntion visit(k)visited visited [fkg;min dfs; dfs dfs+1;push k on the stak;foreah node of in (hildren(k)nvisited) dom visit();if m < min then min m fi od;if min = k thenstron ;;loop dopop t from the stak; stron stron [ftg;if t == k then break fi odoutput stron fi;return min

partial deletion of ^^^-___-graphsIn many ases we an get a better performane if we relax onditionS1 and hange S3 to guarantee the key transition property.S1lax. 8t 2 ft 2 Tjm!tg : t 2 Ts =) ((�t)� � Ts) _ (�(�t) � Ts)

S2. 8t 2 ft 2 Tjm 6!tg : t 2 Ts) 9p 2 �t;m(p) < W(p; t) : �p � TsS3ext. 9k 2 Ts : m !k ^ (�k)� � TsThese requirements for a stubborn set an be represented best byan ^-_-graph with di�erent types of nodes for onjuntions anddisjuntions. This method avoids the problem of deiding at graphgeneration time whih side of a disjuntion should be ative.

We apply the hanged set of onditions to our example net:
f

2

3

c

d

b

e
aS1lax =) if a 2 Ts then 2 Ts _ b 2 TsS2 =) if b 2 Ts then a 2 Ts _ f; fg � TsS1lax =) if 2 Ts then b 2 Ts _ d 2 TsS1lax =) if d 2 Ts then b 2 Ts _ 2 TsS2 =) if e 2 Ts then d 2 TsS3ext =) Ts must ontain an enabled key transition k while(k = a)) fb; fg � Ts; (k =)) d 2 Ts(k = d)) 2 Ts; and (k = f)) a 2 Ts.

This orresponds to the following ^-_-graph:
c d

n0 := true

k = d

k = f

k = a

bf

a e

k = c

By disabling as many nodes as possible, the deletion algorithm�nds Ts = f; dg, the minimal statially stubborn set at m0.

