

School of Psychology and
Computer Science

UCLan Coursework Assessment Brief
2021 -
2022

Module Title: Computational Thinking Module Code: CO2412 Level 5

Alternative Assessment 1: Evaluating the

Efficiency of Algorithms

This assessment is worth
60% of the overall module
mark

THE BRIEF/INSTRUCTIONS

Module Learning Outcomes
On successful completion of this module a student will be able to:

1. Use appropriate methods including logic and probability to reason about algorithms and data
structures.

2. Compare, select and justify algorithms and data structures for a given situation

3. Analyse the space and time complexity of simple algorithms

4. Use a range of appropriate notations to represent and analyse problems

5. Implement and test algorithms and data structures

Assignment Context
You have been employed as a software developer at CompT Enterprises who have asked you to
create a custom sorting function called comptSort, which can be utilised within their own

applications to quickly apply different sorting algorithms.

As the lead developer has forbidden the use of any pre-written search functions you must implement
each of the sorting algorithms manually.

Deliverables
D1
A program, written in the language of your choice, which allows data to be sorted using different
sorting algorithms using a function called comptSort.

Your implementation of comptSort should accept the following parameters:

• uData – the original, unsorted data.

• sort – a string specifying the sorting algorithm to be used as described in the marking scheme

below.

• asc – If true, sort is performed in ascending order. If false, sort is performed in descending

order (only required for 2:1 or higher).

Your function should return the sorted data once complete.

For lower grade bands your function only needs to be able to sort integers.
For 2:2 and higher your function should be able to sort both characters and integers which have been
read in from a file.

D2
A report which acts as a user guide for the function. It should explain in detail how each of the sorting
algorithms work and how algorithms can be compared using their asymptotic complexity (Big O
Notation).
There is no specific word/page count for this report. Rather, marks will be awarded for depth of
explanations and points being supported with appropriate academic references.
You may use diagrams, code snippets and screenshots to support your explanations.

You should use the APA referencing format for your report.

Marking Scheme
Marking bands are indicative and can be overridden at the marker’s discretion with
justification.

40 – 49% (Pass Criteria)

• Suitable data structures are created and initialised with appropriate

unsorted integers.

At this level it is acceptable for the unsorted data to be hard coded.

(10 marks)

• comptSort function has been created with specified parameters.

(10 marks)

• Bubble Sort has been implemented correctly and returns the sorted data.

 (10 marks)

• Report contains a short description of why Big O notation is a useful tool

for comparing the efficiencies of algorithms which is not supported by

any references.

(5 marks)

• A brief description of how Bubble Sort works is included within the report but

does not include any discussion of its asymptotic complexity.

(5 marks)

• Up to an additional 10 marks will be awarded for good programming practices such as

commenting, naming conventions and correct indentations.

50 – 59% (2:2 Criteria)

• Unsorted data is imported into the program from unsorted text files

which may contain either integers or characters.

Depending on what language you choose to implement your solution in you may

need to make some modifications to your comptSort function to accommodate characters

as well as integers.

You should explain any changes you make (or why you do not need to make any) within

your report.

(2 marks)

• Insertion Sort has been implemented correctly and returns the sorted data.

(3 marks)

• Brief discussion of why Big O is a useful tool for comparing algorithms.

Brief explanations are included of how both Insertion Sort and Bubble Sort

operate with the best, worst and average time complexities

being listed but not explained.

Space complexity for both algorithms is also listed.

(3 marks)

• Up to three appropriate references have been used from either

academic (papers, books, etc.) or non-academic (websites) sources.

(2 marks)

60 – 69% (2:1 Criteria)

• Binary Insertion Sort is implemented in addition to the previously listed algorithms.

(2 marks)

• The comptSort function allows for sorting to be performed in both ascending and

descending order

(3 marks)

• Good discussion of why Big O notation is a useful tool for comparing algorithm.

Good discussion of how each of the algorithms work.

The time and space complexity have been listed and compared with appropriate

conclusions about which is the most efficient algorithm being made.

(3 marks)

• Up to five appropriate references have been used from either

academic (papers, books, etc.) or non-academic (websites) sources.

(2 marks)

70 – 79% (1:1 Criteria)

• Merge Sort has been implemented in addition to the previously listed algorithms.

(2 marks)

• Very detailed discussion of why Big O notation is a useful tool for

comparing algorithm.

(3 marks)

• Detailed discussion of how each of the algorithms work which is supported

by diagrams. Note: You should produce your own diagrams which use the same

data you are using to test your program.

The time and space complexity have been listed and compared with appropriate

conclusions about which is the most efficient algorithm being made.

(3 marks)

• At least 6 references from academic sources (papers, journals, etc.)

(2 marks)

80% + (High 1st)

In addition to 1:1 criteria…

• Quick Sort has been implemented and explained in the report with

the support of diagrams.

(5 marks)

• Detailed discussion and analysis of the algorithms with discussion

about limitations of each algorithm.

I.e., consider different use cases for sorting data – is the data completely random, or is

already sorted data being updated? Make clear recommendations based on

asymptotic complexity.

(10 marks)

• All points made are supported by academic literature.

(5 marks)

PREPARATION FOR THE ASSESSMENT

Before attempting this assessment you should refresh yourself with the following topics:

• Reading files (first year content)

• Big O notation

• Sorting algorithms

The following book is available online and from the library which can be a starting point for your reading:
Introduction to Algorithms, Third Edition

You should also decide on which language you wish to implement your solution in. Python or C++ is
recommended.

RELEASE DATES AND HAND IN DEADLINE
Assessment Release date: 18th November 2022 Assessment Deadline Date and time: 22nd April 2022,
23.59 hours.

Please note that this is the latest time you can submit – not the time to submit!
Your feedback/feed forward and mark for this assessment will be provided on 18th January 2021 when feedback
can be accessed.

SUBMISSION DETAILS
You should compress your work into a single zip file and submit using the assignments tab on Blackboard. Do
not use other compression formats.

HELP AND SUPPORT

• Questions regarding this assessment should be asked through the CO2412 Module Teams Channel.

• For support with using library resources, please contact Bob Frost, RSFrost@uclan.ac.uk or
SubjectLibrarians@uclan.ac.uk. You will find links to lots of useful resources in the My Library tab on
Blackboard.

• If you have not yet made the university aware of any disability, specific learning difficulty, long-term health
or mental health condition, please complete a Disclosure Form. The Inclusive Support team will then
contact to discuss reasonable adjustments and support relating to any disability. For more information, visit
the Inclusive Support site.

• To access mental health and wellbeing support, please complete our online referral form. Alternatively, you
can email wellbeing@uclan.ac.uk, call 01772 893020 or visit our UCLan Wellbeing Service pages for more
information.

• If you have any other query or require further support you can contact The <i>, The Student Information
and Support Centre. Speak with us for advice on accessing all the University services as well as the
Library services. Whatever your query, our expert staff will be able to help and support you. For more
information , how to contact us and our opening hours visit Student Information and Support Centre.

• If you have any valid mitigating circumstances that mean you cannot meet an assessment submission
deadline and you wish to request an extension, you will need to apply online prior to the deadline.

Disclaimer: The information provided in this assessment brief is correct at time of publication. In the unlikely
event that any changes are deemed necessary, they will be communicated clearly via e-mail and a new
version of this assessment brief will be circulated.

Version: 1

mailto:SubjectLibrarians@uclan.ac.uk
https://forms.office.com/Pages/ResponsePage.aspx?id=gpn262sDxEyyAnrrGUxQZf4Gb8AdfcJGv3uVCD0jKDBUQVpUMkY3VUhHQlROSFEwSDRTWk40NVBYWS4u
mailto:inclusivesupport@uclan.ac.uk
https://www.uclan.ac.uk/students/support/disability_services.php
https://www.uclan.ac.uk/students/support/support-request-form.php
mailto:wellbeing@uclan.ac.uk
https://www.uclan.ac.uk/students/support/wellbeing-service.php
https://www.uclan.ac.uk/students/library-it/library/the_i.php

