Computational Thinking (CO2412): Tutorial - Calendar Week 41

1. Let us jointly review the most important features of Python syntax.¹

2. The Jupyter notebook from this week's lecture has been extended² by a more elaborate performance measurement comparing the iterative and recursive store-and-recall implementations of the Fibonacci sequence. We will have a look at this together.

There, the seaborn library is used to visualize the data.³ If your installation does not contain that library ("**import** seaborn" fails), download and install the package;⁴ as a fallback solution, any other plotting tool can be used as well, based on the data output.

3. Design and implement **a**) an iterative algorithm and **b**) a recursive algorithm that determines the greatest element of a list; *e.g.*, if the list [3, -1, 0.5, 4, 0, 1] is given, the value 4 should be returned. **c**) Visualize the performance of the two implementations as a function of the length of the list, using lists consisting of random numbers⁵ as an input.

Submit the solution to **no. 3** as a Jupyter Notebook ipynb file, if possible via Blackboard.

Submission deadline: 30th October 2021; discussion planned for 11th November 2021. Group work by up to four people is welcome.

¹ Python Software Foundation, *Python Tutorial*, <u>https://docs.python.org/3/tutorial/</u>, **2021**.

^{2 &}lt;u>http://home.bawue.de/~horsch/teaching/co2412/material/iterations-and-recursions.ipynb</u>

³ See the seaborn website, <u>https://seaborn.pydata.org/</u>, for a presentation of its features.

^{4 &}lt;u>https://anaconda.org/anaconda/seaborn</u>

⁵ There are many ways to do this; one would be to "**import** random" and then create a list with n elements using a statement such as "my_list = [random.random() **for** i **in** range(n)]".