
University of Central Lancashire — Computational Thinking (CO2412) — calendar week 43

Computational Thinking (CO2412):

Tutorial – Calendar Week 43

Program Analysis

M. Horsch, O. Kerr, School of Psychology and Computer Science

1.3.1. Final digit enumeration problem

In the lecture, we discussed an iterative algorithm and its Python implementation, called

mod10 count naive() in the associated Jupyter Notebook,1 for the following problem:

The input consists of two arguments, a list x= [x0,x1, . . . ,xn−1] of n = len(x) integer

numbers, where multiple elements are allowed to have the same value, and a single-digit

integer y with 0 ≤ y ≤ 9. A list [q1,q2,q3] is returned where:

1. q1 is the number of indices i such that xi has y as its final digit. Differently ex-

pressed, it is the number of list elements such that xi mod 10 = y, where mod

stands for modulo, i.e., remainder after division.2 If the same number occurs mul-

tiple times in the list, it also counts multiple times, once for each index.

2. q2 is the number of ordered pairs (i, j) of indices, with i 6= j, such that

xix j mod 10 = y; i.e., y is the final digit of xix j. The two different ways of arrang-

ing the indices, (i, j) and (j, i), both count separately – therefore, q2 is always an

even number. Note that the requirement is for i and j to be different, not xi and x j.

3. q3 is the number of ordered triples (i, j,k) of indices, all different from each other

(i 6= j, i 6= k, j 6= k), for which xix jxk mod 10 = y. As above, all the different

permutations (i.e., arrangements) of the three indices each count separately, of

which there are six each time; accordingly, q3 is always divisible by 6.

For example, if x = [24,8,19,8,2] and y = 4, the list [1,2,24] needs to be returned.3 The

mod10 count naive() code solves this problem, but it has O(n3) time requirements,

by which it does not perform very favourably for long lists.

a) Propose a more efficient algorithm and develop a more performant code.

b) Of what order is the time efficiency of your algorithm, using Landau notation (i.e.,

“big O notation”)? Provide a brief justification similar to those from the lecture.

1For the notebook, cf. https://home.bawue.de/~horsch/teaching/co2412/material/

iterative-algorithms.ipynb.
2In Python, this condition is expressed by x[i] % 10 == y.
3q1 = 1 for x0 = 24, q2 = 2 for x1x3 = x3x1 = 64, and q3 = 24 for x1x2x4 = x1x4x2 = x2x1x4 = x2x3x4 =

x2x4x1 = x2x4x3 = x3x2x4 = x3x4x2 = x4x1x2 = x4x2x1 = x4x2x3 = x4x3x2 = 304, in combination with x0x1x4 =
x0x3x4 = x0x4x1 = x0x4x3 = x1x0x4 = x1x4x0 = x3x0x4 = x3x4x0 = x4x0x1 = x4x0x3 = x4x1x0 = x4x3x0 = 384.

c) Conduct performance measurements, including but not necessarily limited to the

two demo lists x200 and x1000 from the notebook,4 with n = 200 and 1000, re-

spectively. What is the ratio between the two runtimes? For the naive implemen-

tation, which scales with O(n3), it is close to 125 = (1000/200)3; for a code that

has an asymptotic runtime in O(nm), a ratio close to 5m should be expected.

1.3.2. Number matching problem

The function natmatch iter() takes two arguments: First, a list of k integer numbers

x = [x0,x1, . . . ,xk−1], and second, a natural number y; it determines whether there is a

match, here defined by the existence of two list elements with xi + x j = y, where xi 6= x j.

In the present and the previous notebook, we were calling this function for a given

value of k many times, where the k elements of the list x were assigned new random

values each time, using a uniform random distribution5 over all integers from 0 to k2 −1.

The second argument was given by y = k2. Statistics from these function calls make it

apparent that for large values of k, a match is found in about 39% to 40% of the cases.

Determine the fraction of cases for which there is a match, in the case of large k

(ideally, as k approaches infinity), as accurately as possible.6

Submission deadline: 13th November 2021; discussion planned for 25th November

2021. Group work by up to four people is welcome.

4For validation, the return value for x = x200, y = 7 should be [28, 1528, 134610], and for x = x1000,

y = 7 it should be [105, 42660, 17483370].
5That is, each integer from 0 to k2 −1 had the same probability of being assigned to any of the list elements.
6The method suggested here is to run a large number of function calls with random input for a large value

of k, by which a sufficient accuracy should be reached. With some mathematical knowledge, going beyond the

scope of this module, is also possible to give an exact answer; note, however, that here you are not expected to

do this (of course, any such solutions or attempts are nonetheless very welcome).

