Computational Thinking (CO2412): Tutorial - Calendar Week 44

Algorithm Design

M. Horsch, O. Kerr, School of Psychology and Computer Science

2.1. Maximum sublist product problem

In the lecture, we discussed the maximum sublist sum problem. ${ }^{1}$ Now consider the maximum sublist product problem, defined in the same way, but aiming at the sublist with the maximum possible product of its elements:

The input (argument) consists of a list $\mathbf{x}=\left[x_{0}, x_{1}, \ldots, x_{n-1}\right]$ of floating-point numbers x_{k} with $0 \leq k<n$. The output (return value) is the sublist $\mathbf{x}[i: j]$, with $0 \leq i \leq j \leq n$, for which the product $x_{i} \cdot x_{i+1} \cdot \ldots \cdot x_{j-1}$ becomes as large as possible.
a) Develop and implement an algorithm solving this problem.
b) Did you use any of the design strategies ${ }^{2}$ from the lecture?
c) Validate your code by applying it to test cases that you can also solve by hand. ${ }^{3}$
d) What asymptotic time efficiency do you obtain by analysing the algorithm?

Remark: The product over the empty sublist $\mathbf{x}[0: 0]$, or generally $\mathbf{x}[i: i]$, is here defined to be 1 . Therefore, it is never correct to return a sublist with a product smaller than one; instead, an empty sublist should be returned.

Submission deadline: 20th November 2021; discussion planned for 2nd December 2021. Group work by up to four people is welcome.

[^0]
[^0]: ${ }^{1}$ See also https://home.bawue.de/~horsch/teaching/co2412/material/maximum-sublist.ipynb.
 "No" is perfectly good if you did not.
 ${ }^{3}$ For example, with $\mathbf{x}=[1.5,-2,-2,-3,0.5,3,-0.25]$, the sublist $\mathbf{x}[2: 6]=[-2,-3,0.5,3]$ should be returned, since the product of its elements is 9 , greater than that of any other sublist of \mathbf{x}.

