
Where opportunity creates success

CO2412
Computational Thinking

Module structure
What is computational thinking?



25th October 2021CO2412

Recommended literature:
– K. Erciyes, Discrete Mathematics and Graph Theory, Cham: Springer (ISBN 978-3-

03061114-9), 2021.
– P. Sanders, K. Mehlhorn, M. Dietzfelbinger, R. Dementiev, Sequential and Parallel 

Algorithms and Data Structures, Cham: Springer (ISBN 978-3-03025208-3), 2021.

Resources



35th October 2021CO2412

Recommended literature:
– K. Erciyes, Discrete Mathematics and Graph Theory, Cham: Springer (ISBN 978-3-

03061114-9), 2021.
– P. Sanders, K. Mehlhorn, M. Dietzfelbinger, R. Dementiev, Sequential and Parallel 

Algorithms and Data Structures, Cham: Springer (ISBN 978-3-03025208-3), 2021.

Resources

Additional references for special topics, e.g., today:
– K. Brennan, M. Resnick, “New frameworks for studying and assessing the 

development of computational thinking,” in Proceedings of AERA 2012, 
Cambridge, MA: Academic Press, 2012.



45th October 2021CO2412

Recommended literature:
– K. Erciyes, Discrete Mathematics and Graph Theory, Cham: Springer (ISBN 978-3-

03061114-9), 2021.
– P. Sanders, K. Mehlhorn, M. Dietzfelbinger, R. Dementiev, Sequential and Parallel 

Algorithms and Data Structures, Cham: Springer (ISBN 978-3-03025208-3), 2021.

Resources

Course website:
– https://home.bawue.de/~horsch/teaching/co2412/ 

All essential information will be made accessible through the course website.

Additional references for special topics, e.g., today:
– K. Brennan, M. Resnick, “New frameworks for studying and assessing the 

development of computational thinking,” in Proceedings of AERA 2012, 
Cambridge, MA: Academic Press, 2012.

https://home.bawue.de/~horsch/teaching/co2412/


5th October 2021CO2412

What is computational thinking?



65th October 2021CO2412

Brennan & Resnick (2012) “have developed a definition of computational 
thinking that involves three dimensions:

– computational concepts (the concepts designers employ […]),
– computational practices (the practices designers develop […]), and
– computational perspectives (the perspectives designers form about 

the world around them and about themselves).”

What is computational thinking?

Computational thinking is more about design than about implementation.



75th October 2021CO2412

Brennan & Resnick (2012) “have developed a definition of computational 
thinking that involves three dimensions:

– computational concepts (the concepts designers employ […]),
– computational practices (the practices designers develop […]), and
– computational perspectives (the perspectives designers form about 

the world around them and about themselves).”

What is computational thinking?

Computational thinking is more about design than about implementation.

These concepts, practices, and perspectives are easy to develop even in 
children; e.g., for Scratch as evaluated by Brennan & Resnick (2012) at the 
time, “hundreds of thousands of young creators (mostly between the ages of 8 
and 16)”.



85th October 2021CO2412

Brennan & Resnick (2012) “have developed a definition of computational 
thinking that involves three dimensions:

– computational concepts (the concepts designers employ […]),
– computational practices (the practices designers develop […]), and
– computational perspectives (the perspectives designers form about 

the world around them and about themselves).”

What is computational thinking?

Computational thinking is more about design than about implementation.

These concepts, practices, and perspectives are easy to develop even in 
children; e.g., for Scratch as evaluated by Brennan & Resnick (2012) at the 
time, “hundreds of thousands of young creators (mostly between the ages of 8 
and 16)”. Our module will address the theory behind computational thinking. 



95th October 2021CO2412

The official programming language of the module is Python.

Programming practice



105th October 2021CO2412

The official programming language of the module is Python.

However, Computational Thinking is a theoretical course.

It does not matter what programming languages or environments you use to 
implement the considered data structures and algorithms.

Any code that is well written and documented will be accepted as part of the 
solution to a problem from our practical/tutorial sessions.

Programming practice



115th October 2021CO2412

The official programming language of the module is Python.

However, Computational Thinking is a theoretical course.

It does not matter what programming languages or environments you use to 
implement the considered data structures and algorithms.

Any code that is well written and documented will be accepted as part of the 
solution to a problem from our practical/tutorial sessions. If it does not run on 
my system (a rather average Linux installation) or if there are any other issues 
due to the employed environment, I may ask for clarification, e.g., by 
demonstrating your solution on the system where it was implemented.

In extreme, unexpected cases you may be required to rewrite code in Python.

Programming practice



125th October 2021CO2412

Algorithms are best discussed using pseudocode:

Programming practice

Since the analysis of an algorithm should occur at a level of abstraction 
higher than that of its practical implementation (as code), simple generally 
comprehensible notations are often more suitable than syntactically correct 
code in any given programming language.



135th October 2021CO2412

Upon successful completion of this module, a student will be able to:

1) Use methods including logic and probability to reason about 
algorithms and data structures;

2) Compare, select, and justify algorithms and data structures for a given 
problem;

3) Analyse the computational complexity of problems and the efficiency 
of algorithms;

4) Use a range of notations to represent and analyse problems;
5) Implement and test algorithms and data structures.

Learning outcomes



145th October 2021CO2412

Upon successful completion of this module, a student will be able to:

1) Use methods including logic and probability to reason about 
algorithms and data structures;

2) Compare, select, and justify algorithms and data structures for a given 
problem;

3) Analyse the computational complexity of problems and the efficiency 
of algorithms;

4) Use a range of notations to represent and analyse problems;
5) Implement and test algorithms and data structures.

Learning outcomes

program 
analysis algorithm 

design graphs 
and trees



155th October 2021CO2412

Upon successful completion of this module, a student will be able to:

1) Use methods including logic and probability to reason about 
algorithms and data structures;

2) Compare, select, and justify algorithms and data structures for a given 
problem;

3) Analyse the computational complexity of problems and the efficiency 
of algorithms;

4) Use a range of notations to represent and analyse problems;
5) Implement and test algorithms and data structures.

Learning outcomes

program 
analysis

randomness 
and probability

logic

algorithm 
design graphs 

and trees



165th October 2021CO2412

Upon successful completion of this module, a student will be able to:

1) Use methods including logic and probability to reason about 
algorithms and data structures;

2) Compare, select, and justify algorithms and data structures for a given 
problem;

3) Analyse the computational complexity of problems and the efficiency 
of algorithms;

4) Use a range of notations to represent and analyse problems;
5) Implement and test algorithms and data structures.

Learning outcomes

program 
analysis

randomness 
and probability

logic

algorithm 
design graphs 

and trees



175th October 2021CO2412

Upon successful completion of this module, a student will be able to:

1) Use methods including logic and probability to reason about 
algorithms and data structures;

2) Compare, select, and justify algorithms and data structures for a given 
problem;

3) Analyse the computational complexity of problems and the efficiency 
of algorithms;

4) Use a range of notations to represent and analyse problems;
5) Implement and test algorithms and data structures.

Learning outcomes

program 
analysis

randomness 
and probability

logic

algorithm 
design graphs 

and trees



185th October 2021CO2412

Upon successful completion of this module, a student will be able to:

1) Use methods including logic and probability to reason about 
algorithms and data structures;

2) Compare, select, and justify algorithms and data structures for a given 
problem;

3) Analyse the computational complexity of problems and the efficiency 
of algorithms;

4) Use a range of notations to represent and analyse problems;
5) Implement and test algorithms and data structures.

Learning outcomes

program 
analysis

randomness 
and probability

logic

algorithm 
design graphs 

and trees
formal 

languages

complexity



195th October 2021CO2412

Upon successful completion of this module, a student will be able to:

1) Use methods including logic and probability to reason about 
algorithms and data structures;

2) Compare, select, and justify algorithms and data structures for a given 
problem;

3) Analyse the computational complexity of problems and the efficiency 
of algorithms;

4) Use a range of notations to represent and analyse problems;
5) Implement and test algorithms and data structures.

Learning outcomes

program 
analysis

randomness 
and probability

logic

algorithm 
design graphs 

and trees
formal 

languages

complexity



205th October 2021CO2412

Upon successful completion of this module, a student will be able to:

1) Use methods including logic and probability to reason about 
algorithms and data structures;

2) Compare, select, and justify algorithms and data structures for a given 
problem;

3) Analyse the computational complexity of problems and the efficiency 
of algorithms;

4) Use a range of notations to represent and analyse problems;
5) Implement and test algorithms and data structures.

Learning outcomes

program 
analysis

randomness 
and probability

logic

algorithm 
design graphs 

and trees
formal 

languages

complexity



215th October 2021CO2412

On the topic of program analysis, we will:

– Consider the space (memory) and time efficiency of algorithms;

– Describe asymptotic scaling behaviour using Landau O(n) notation;

– Analyse algorithms formally via pre-/postconditions of statements;

– Review concurrency and scalability for massively-parallel computing.

Module structure

program 
analysis

randomness 
and probability

logic

algorithm 
design graphs 

and trees
formal 

languages

complexity



225th October 2021CO2412

On the topic of algorithm design, we will:

– Compare and apply algorithm design strategies such as recursion, 
divide-and-conquer, greedy algorithms, dynamic programming;

– Look at common data structures and their specification and 
implementation;

– Apply algorithm design to sorting as a highly relevant use case.

Module structure

program 
analysis

randomness 
and probability

logic

algorithm 
design graphs 

and trees
formal 

languages

complexity



235th October 2021CO2412

On the topic of graphs and trees, we will:

– Introduce graph theory and its basic definitions and concepts, 
including trees as a special case;

– Address basic tasks/problems when dealing with graphs, e.g., 
computing the shortest paths or connected components, strategies for 
graph traversal, and the application of trees to sorting and searching;

– Discuss numerical and mathematical representations of graphs.

Module structure

program 
analysis

randomness 
and probability

logic

algorithm 
design graphs 

and trees
formal 

languages

complexity



245th October 2021CO2412

On the topic of graphs and trees, we will:

– Introduce graph theory and its basic definitions and concepts, 
including trees as a special case;

– Address basic tasks/problems when dealing with graphs, e.g., 
computing the shortest paths or connected components, strategies for 
graph traversal, and the application of trees to sorting and searching;

– Discuss numerical and mathematical representations of graphs.

Module structure

program 
analysis

randomness 
and probability

logic

algorithm 
design graphs 

and trees
formal 

languages

complexity



255th October 2021CO2412

On the topic of logic, we will:

– Introduce propositional logic and the semantics of logical formulas;

– Consider deductive logical reasoning by inference and address basic 
problems for logical expressions such as their satisfiability;

– Introduce first-order logic as a powerful formalism by which most 
application scenarios, including from program analysis, can be covered.

Module structure

program 
analysis

randomness 
and probability

logic

algorithm 
design graphs 

and trees
formal 

languages

complexity



265th October 2021CO2412

On the topic of formal languages, we will:

– Formalize the definition of a computational problem in terms of a 
language and the word problem for a given language;

– Introduce ways for specifying formal languages, e.g., by regular 
expressions and more generally by generative grammars;

– Introduce finite automata and the Turing machine, a simple theoretical 
computer model for purposes of decidability and complexity analysis.

Module structure

program 
analysis

randomness 
and probability

logic

algorithm 
design graphs 

and trees
formal 

languages

complexity



275th October 2021CO2412

On the topic of complexity, we will:

– Remove ourselves from considering specific algorithms by introducing 
complexity, i.e., the efficiency of the best possible algorithm for a given 
problem, as an additional layer of abstraction;

– Introduce the hierarchy of complexity classes, NP-complete problems, 
and the P = NP problem;

– Characterize the complexity of common problems from graph theory 
and from logic.

Module structure

program 
analysis

randomness 
and probability

logic

algorithm 
design graphs 

and trees
formal 

languages

complexity



285th October 2021CO2412

On the topic of randomness and proabability, we will:

– Introduce and/or review basic concepts from probability theory;

– Apply statistics and discrete mathematics to probability;

– Discuss randomness and random number generators;

– Consider randomized algorithms that can help at addressing 
computationally challenging problems.

Module structure

program 
analysis

randomness 
and probability

logic

algorithm 
design graphs 

and trees
formal 

languages

complexity



295th October 2021CO2412

Grading

Number of 
Assessments

Form of Assessment
 
 

% 
weighting 

Size of 
Assessment/
Duration/
Wordcount

Category of 
assessment

Learning 
outcomes 
being 
assessed

1 Examination 40% 1.5 hours Written exam 1,2,3,4

1 (split into 
parts)

Practical work 
involving the 
selection, 
implementation and 
evaluation of 
algorithms and data 
structures 

60% 2,000 words 
equivalent

Coursework 1,2,3,4,5

To pass this module, you must achieve a grade of 40% or above aggregated 
across all the assessments.



Where opportunity creates success

CO2412
Computational Thinking

Module structure
What is computational thinking?


