
Where opportunity creates success

CO2412
Computational Thinking

Pseudocode and program analysis
Recursive functions

212th October 2021CO2412

Module overview

Upon successful completion of this module, a student will be able to:

1) Use methods including logic and probability to reason about
algorithms and data structures;

2) Compare, select, and justify algorithms and data structures for a given
problem;

3) Analyse the computational complexity of problems and the efficiency
of algorithms;

4) Use a range of notations to represent and analyse problems;
5) Implement and test algorithms and data structures.

program
analysis

randomness
and probability

logic

algorithm
design graphs

and trees
formal

languages

complexity

12th October 2021CO2412

Pseudocode and
program analysis

412th October 2021CO2412

Binary executable (equivalently, script + executable interpreter)

Program implementation (code)

Algorithm description (pseudocode)

Levels of abstraction in program analysis

accessible to automated analysis;
formal verification may be possible

different programming languages
entail variation in data structures, etc.

accessible to analysis by humans;
e.g., efficiency of the algorithm

informal representation, independent
of implementation and architecture

512th October 2021CO2412

Binary executable (equivalently, script + executable interpreter)

Program implementation (code)

Algorithm description (pseudocode)

Problem statement

Levels of abstraction in program analysis

performance, i.e., resource
requirements, on given hardware

influenced by compiler/interpreter
choice and configuration, etc.

accessible to automated analysis;
formal verification may be possible

different programming languages
entail variation in data structures, etc.

accessible to analysis by humans;
e.g., efficiency of the algorithm

informal representation, independent
of implementation and architecture

open to theoretical investigation;
complexity: best possible efficiency

proofs of upper or lower bounds
apply to any potential algorithm

612th October 2021CO2412

Code development cycle

• Specify
– Function specification – what it should do
–Non-functional specification – how well it should do it

• Design
– Select appropriate algorithms and data structures

• Consider effectiveness/correctness – does it do
what it is supposed to?

• Consider efficiency
– Size
– Speed

• Implement
– Create solution at low level

712th October 2021CO2412

Design by contract

• Specify
– Function specification – what it should do
–Non-functional specification – how well it should do it

• Design
– Select appropriate algorithms and data structures

• Consider effectiveness/correctness – does it do
what it is supposed to?

• Consider efficiency
– Size
– Speed

• Implement
– Create solution at low level

We need a way of specifying
algorithms and their outcomes

“contracts” between specifier,
designer, and programmer

812th October 2021CO2412

Design by contract

• Specify
– Function specification – what it should do
–Non-functional specification – how well it should do it

• Design
– Select appropriate algorithms and data structures

• Consider effectiveness/correctness – does it do
what it is supposed to?

• Consider efficiency
– Size
– Speed

• Implement
– Create solution at low level

• Evaluate
– Debug, assess for syntactic & semantic correctness
– Check performance (i.e., resource requirements)

We need a way of specifying
algorithms and their outcomes

“contracts” between specifier,
designer, and programmer

912th October 2021CO2412

Pseudocode as an informal specification

Algorithms are best discussed using pseudocode:

Since the analysis of an algorithm should occur at a level of abstraction
higher than that of its practical implementation (as code), simple generally
comprehensible notations are often more suitable than syntactically correct
code in any given programming language.

1012th October 2021CO2412

Pseudocode as an informal specification

 int prod = 1;
 for(int i=0; i < n; i++) prod *= fact[i];

 prod = 1
 for i in range(n):
 prod *= fact[i]

code Program code is intended for
computational processing by a
compiler or interpreter.

Pseudocode is a representation of
the semantics (meaning) of the
code for a human reader.

The C/C++ code on top and the
Python code at the bottom have
equivalent outcomes if the initial
state at the beginning of the block
is equivalent.

As algorithms, they can be given a
joint representation.

1112th October 2021CO2412

Pseudocode as an informal specification

input: int n, int array fact
with ≥n elements

output: int prod

 prod 1←
 for int i in 0 to n–1
 prod ← fact[i] * prod
 end for

 int prod = 1;
 for(int i=0; i < n; i++) prod *= fact[i];

 prod = 1
 for i in range(n):
 prod *= fact[i]

pseudocodecode

1212th October 2021CO2412

Program flow graphs1

1F. Nielson, H. Riis Nielson, C. Hankin,
Principles of Program Analysis,
Heidelberg: Springer, 2005.

1312th October 2021CO2412

Breaking complex problems down into smaller pieces can make them more
manageable. In procedural (and object oriented) programming languages,
functions (and methods) are typically used for that purpose.

Decomposition

overall algorithm ≡ combine_functions(function1, function2, …)

If the functions (or methods) for the smaller tasks have been designed by con-
tract and are known to fulfill their respective purpose, e.g., supported by unit
testing, it becomes easier to establish the correctness of the overall algorithm.

In many procedural programming languages, including C and Python, code
blocks that can be called from other code blocks are called functions.
Employing functions allows jumping to code that solve a certain task in a robust
way, without needing to use the undesirable “goto” statement.1

1E. W. Dijkstra, “Go to statement considered harmful,” Communications of the ACM 11(3), 147, 1968.

1412th October 2021CO2412

Procedural programming

• Functions are named

• Each function has a distinct task

• It may have its own variables

• It may call another function

• It may return a value

• It may accept arguments
x = multiply(n, fact)

• Function parameters are the variables listed in the function’s definition.
Function arguments are the values passed to the function, which are
assigned to the function’s parameters at runtime.

In many procedural programming languages, including C and Python, code
blocks that can be called from other code blocks are called functions.

Role of functions in procedural programming:

1512th October 2021CO2412

Procedural programming

• Functions are named

• Each function has a distinct task

• It may have its own variables

• It may call another function

• It may return a value

• It may accept arguments
x = multiply(n, fact)

• Function parameters are the variables listed in the function’s definition.
Function arguments are the values passed to the function, which are
assigned to the function’s parameters at runtime.

In many procedural programming languages, including C and Python, code
blocks that can be called from other code blocks are called functions. However,
do not confuse procedural programming (as a programming paradigm) with
functional programming, a name given to a very different approach (LISP, etc.).

1612th October 2021CO2412

Procedural programming

input: int n, int array fact
with ≥n elements

output: int prod

 prod 1←
 for int i in 0 to n–1
 prod ← fact[i] * prod
 end for

 int prod = 1;
 for(int i=0; i < n; i++) prod *= fact[i];

 prod = 1
 for i in range(n):
 prod *= fact[i]

pseudocodecode

1712th October 2021CO2412

Procedural programming

function multiply
input: int n, int array fact

with ≥n elements
output: int prod

 prod 1←
 for int i in 0 to n–1
 prod ← fact[i] * prod
 end for
 return prod
end function

int multiply(int n, int* fact)
{
 int prod = 1;
 for(int i=0; i < n; i++) prod *= fact[i];
 return prod;
}

def multiply(n, fact):
 prod = 1
 for i in range(n):
 prod *= fact[i]
 return prod

pseudocodecode

1812th October 2021CO2412

Pass by value and pass by reference

Two major ways in which arguments can be passed to functions:

Argument passing by value

Argument passing by reference

address
&x

value
x

variable name “x”

address
&y

value
y

variable name “y”initially, x ≡ 4
initially, y ≡ 4

 &y is unrelated to &x

address
&x

value
x

variable name “x”

address
&y

value
y

variable name “y”initially, x ≡ 4
initially, y ≡ &x,
hence *y ≡ 4

1912th October 2021CO2412

Pass by value and pass by reference

Two major ways in which arguments can be passed to functions:

Argument passing by value

Argument passing by reference

address
&x

value
x

variable name “x”

address
&y

value
y

variable name “y”initially, x ≡ 4

finally, x ≡ 4

initially, y ≡ 4

y 5 ←

 &y is unrelated to &x

address
&x

value
x

variable name “x”

address
&y

value
y

variable name “y”initially, x ≡ 4

finally, x ≡ 5

initially, y ≡ &x,
hence *y ≡ 4

*y 5 ←

2012th October 2021CO2412

Pass by value and pass by reference

Two major ways in which arguments can be passed to functions:

Argument passing by value

Argument passing by reference

address
&x

value
x

variable name “x”

address
&y

value
y

variable name “y”initially, x ≡ 4

finally, x ≡ 4

initially, y ≡ 4

y 5 ←

 &y is unrelated to &x

address
&x

value
x

variable name “x”

address
&y

value
y

variable name “y”initially, x ≡ 4

finally, x ≡ 5

initially, y ≡ &x,
hence *y ≡ 4

*y 5 ←
y new int←

*y 6 ←

2112th October 2021CO2412

Pass by object reference

In Python, object references are passed by value (i.e., “pass by object reference”):

Argument passing by object reference in Python (similarly, in Java)

Argument passing by reference

address
&x

value
x address

&y
value

y

initially, x ≡ []

address
&x

value
x

variable name “x”

address
&y

value
y

variable name “y”initially, x ≡ 4

finally, x ≡ 5

initially, y ≡ &x,
hence *y ≡ 4

*y 5 ←
y new int←

*y 6 ←

initially, &y ≡ &x,
hence y ≡ []

function call f(x)

object reference “y”
object reference “x”

2212th October 2021CO2412

Pass by object reference

In Python, object references are passed by value (i.e., “pass by object reference”):

Argument passing by object reference in Python (similarly, in Java)

Argument passing by reference

address
&x

value
x address

&y
value

y

initially, x ≡ []

finally, x ≡ [1]

address
&x

value
x

variable name “x”

address
&y

value
y

variable name “y”initially, x ≡ 4

finally, x ≡ 5

initially, y ≡ &x,
hence *y ≡ 4

*y 5 ←
y new int←

*y 6 ←

initially, &y ≡ &x,
hence y ≡ []

y.append(1)

function call f(x)

object reference “y”
object reference “x”

2312th October 2021CO2412

Pass by object reference

In Python, object references are passed by value (i.e., “pass by object reference”):

Argument passing by object reference in Python (similarly, in Java)

Argument passing by reference

address
&x

value
x

object reference “x”

address
&y

value
y

object reference “y”initially, x ≡ []

finally, x ≡ [1]

address
&x

value
x

variable name “x”

address
&y

value
y

variable name “y”initially, x ≡ 4

finally, x ≡ 5

initially, y ≡ &x,
hence *y ≡ 4

*y 5 ←
y new int←

*y 6 ←

initially, &y ≡ &x,
hence y ≡ []

y.append(1)
y [1, 2]←

function call f(x)
assigning a new

object to y changes
the address!

12th October 2021CO2412

Recursive functions

2512th October 2021CO2412

Recursion can be used to define a function, e.g., for the geometric series

fq(0) = 1 and fq(k) = qk + fq(k – 1).

The approach is applicable to any domain that is defined, or can be
constructed, by induction.

Example: The set of integers ℕ can be constructed by stating that 1∈ (base ℕ
case), and for any k ∈ ℕ, there is a successor element k+1∈ .ℕ

It is applied by reducing a problem instance for a given argument value k to
that for another, more elementary argument value k’ < k. Here, the operator <
signifies some order indicating closeness to the base case (smallest element).

Such constructions are often used to define mathematical sequences.

Recursive function definitions

2612th October 2021CO2412

Recursion can be used to define a function, e.g., for the geometric series

fq(0) = 1 and fq(k) = qk + fq(k – 1).

The approach is applicable to any domain that is defined, or can be
constructed, by induction.

Example: The set of integers ℕ can be constructed by stating that 1∈ (base ℕ
case), and for any k ∈ ℕ, there is a successor element k+1∈ .ℕ

It is applied by reducing a problem instance for a given argument value k to
that for another, more elementary argument value k’ < k. Here, the operator <
signifies some order indicating closeness to the base case (smallest element).

Such constructions are often used to define mathematical sequences.

Recursive function definitions

def geometric_series(q, k):
 if k>0:
 return q**k + geometric_series(q, k-1)
 else:
 return 1

2712th October 2021CO2412

Recursion can be used to define a function, e.g., for the geometric series

fq(0) = 1 and fq(k) = qk + fq(k – 1);

The approach is applicable to any domain that is defined, or can be
constructed, by induction.

Example: The set of integers ℕ can be constructed by stating that 1∈ (base ℕ
case), and for any k ∈ ℕ, there is a successor element k+1∈ .ℕ

It is applied by reducing a problem instance for a given argument value k to
that for another, more elementary argument value k’ < k. Here, the operator <
signifies some order indicating closeness to the base case (smallest element).

Such constructions are often used to define mathematical sequences.
Recursively defined functions are not always best computed by recursion.

Recursive function definitions

 fq(k) = (1 – qk+1) / (1 – q).

2812th October 2021CO2412

Recursion is the process of defining the solution to a problem (or the solution
to a problem) in terms of a simpler or smaller instance of the same problem.

Recursion as an algorithm design strategy

Image from: https://www.therussianstore.com/blog/the-history-of-nesting-dolls

Recursion is a form of decomposition:

solution(k) ≡ recursive_step(solution(< k))

k
< k

http://www.therussianstore.com/blog/the-history-of-nesting-dolls

2912th October 2021CO2412

Recursion is the process of defining the solution to a problem (or the solution
to a problem) in terms of a simpler or smaller instance of the same problem.

Recursion as an algorithm design strategy

Image from: https://www.therussianstore.com/blog/the-history-of-nesting-dolls

Recursion is a form of decomposition:

solution(k) ≡ recursive_step(solution(< k))

solution(⊥) ≡ base_case_solution

The base case (or a base
case) is reached when
the problem has been
simplified to the utmost

k
< k

⊥

http://www.therussianstore.com/blog/the-history-of-nesting-dolls

3012th October 2021CO2412

Recursion is the process of defining the solution to a problem (or the solution
to a problem) in terms of a simpler or smaller instance of the same problem.

Recursion as an algorithm design strategy

Image from: https://www.therussianstore.com/blog/the-history-of-nesting-dolls

Recursion is a form of decomposition:

solution(k) ≡ recursive_step(solution1(< k), solution2(< k), …)

solution(⊥) ≡ base_case_solution

The base case (or a base
case) is reached when
the problem has been
simplified to the utmost

⊥

Multiple recursion
decomposes a problem
into more than one
simplified instance

http://www.therussianstore.com/blog/the-history-of-nesting-dolls

3112th October 2021CO2412

The Fibonacci numbers constitute a mathematical sequence that is defined by
multiple recursion:

Multiple recursion example

F0 = 0

F1 = 1

Fk = Fk–1 + Fk–2 , for k > 1 0, 1, 1, 2, 3, 5, 8, 13, …

While the definition is most conveniently given in the form of a recursion, the
numerical implementation would usually proceed by iteration. Compare the
code employing a loop with that obtained by a direct calque of the definition.

3212th October 2021CO2412

The Fibonacci numbers constitute a mathematical sequence that is defined by
multiple recursion:

Multiple recursion example

F0 = 0

F1 = 1

Fk = Fk–1 + Fk–2 , for k > 1 0, 1, 1, 2, 3, 5, 8, 13, …

While the definition is most conveniently given in the form of a recursion, the
numerical implementation would usually proceed by iteration. Compare the
code employing a loop with that obtained by a direct calque of the definition.

k – 1 k – 2

k – 2 k – 3 k – 3 k – 4

k

k – 3 k – 4 k – 4 k – 4 k – 5k – 5 k – 5 k – 6

3312th October 2021CO2412

The Fibonacci numbers constitute a mathematical sequence that is defined by
multiple recursion:

Multiple recursion example

F0 = 0

F1 = 1

Fk = Fk–1 + Fk–2 , for k > 1 0, 1, 1, 2, 3, 5, 8, 13, …

While the definition is most conveniently given in the form of a recursion, the
numerical implementation would usually proceed by iteration. Compare the
code employing a loop with that obtained by a direct calque of the definition.

k – 1 k – 2

k – 2 k – 3 k – 3 k – 4

k

k – 3 k – 4 k – 4 k – 4 k – 5k – 5 k – 5 k – 6

k – 1 k – 2

k – 2 k – 3

k

k – 3 k – 4

store and recall
partial solutions

3412th October 2021CO2412

Loop structures can be equivalently transformed into recursions as follows:

Converting an iterative to a recursive solution

function do_iteratively
input: argv
output: retv

declaration of local variables work

while condition
 [single-step body]
end while
return retv

function do_recursively
input: argv, work
output: retv, work

if condition then
 [single-step body]
 return do_recursively(argv, work)
else return retv, work

recursive implementationiterative implementation

3512th October 2021CO2412

Loop structures can be equivalently transformed into recursions as follows:

Converting an iterative to a recursive solution

function do_iteratively
input: argv
output: retv

declaration of local variables work
any other statements

while condition
 [single-step body]
end while
return retv

function do_recursively
input: argv, work
output: retv, work

if condition then
 [single-step body]
 return do_recursively(argv, work)
else return retv, work

recursive implementationiterative implementation

Example: Python code for prime factor decomposition.

separate initialization block

3612th October 2021CO2412

Loop structures can be equivalently transformed into recursions as follows:

Converting an iterative to a recursive solution

def primfact_iter(n):
 factors = []
 i = 2
 while i <= n**(1/2):
 while n%i == 0:
 factors.append(i)
 n /= i
 i += 1
 if n != 1:
 factors.append(n)
 return factors

def primfact_recur_body(n, factors, i):
 if i <= n**(1/2):
 while n%i == 0:
 factors.append(i)
 n /= i
 i += 1
 return primfact_recur_body(n, factors, i)
 else:
 return n, factors, i

recursive implementationiterative implementation

Example: Python code for prime factor decomposition.

3712th October 2021CO2412

Loop structures can be equivalently transformed into recursions as follows:

Converting an iterative to a recursive solution

def primfact_iter(n):
 factors = []
 i = 2
 while i <= n**(1/2):
 while n%i == 0:
 factors.append(i)
 n /= i
 i += 1
 if n != 1:
 factors.append(n)
 return factors

def primfact_recur_body(n, factors, i):
 if i <= n**(1/2):
 while n%i == 0:
 factors.append(i)
 n /= i
 i += 1
 return primfact_recur_body(n, factors, i)
 else:
 return n, factors, i

recursive implementationiterative implementation

Example: Python code for prime factor decomposition.

def primfact_recur(n):
 factors = []
 i = 2
 n, factors, i = primfact_recur_body(n, factors, i)
 if n != 1:
 factors.append(n)
 return factors

3812th October 2021CO2412

For simple recursion over ℕ, transformation into loop form is straightforward:

Converting a recursive to an iterative solution

def geometric_series_recur(q, k):
 if k>0:
 return q**k + geometric_series_recur(q, k-1)
 else:
 return 1

fq(k) = ∑0≤j≤k q
j

• begin with the base case
• apply loop construct to work upward

3912th October 2021CO2412

For simple recursion over ℕ, transformation into loop form is straightforward:

Converting a recursive to an iterative solution

def geometric_series_recur(q, k):
 if k>0:
 return q**k + geometric_series_recur(q, k-1)
 else: # i.e., if k == 0
 return 1

fq(k) = ∑0≤j≤k q
j

• begin with the base case
• apply loop construct to work upward

def geometric_series_iter(q, k):
 j = 0
 retv = 1
 while k > j:
 j += 1
 retv += q**j
 return retv

For multiple recursions or over domains with a more complex structure, loop-
based equivalents can also be constructed, but in a less straightforward way.

Where opportunity creates success

CO2412
Computational Thinking

Pseudocode and program analysis
Recursive functions

