CO2412
 Computational Thinking

Pseudocode and program analysis Recursive functions

Module overview

Upon successful completion of this module, a student will be able to:

1) Use methods including logic and probability to reason about algorithms and data structures;
2) Compare, select, and justify algorithms and data structures for a given of algorithms;
3) Use a range of notations to represent and analyse problems;
4) Implement and test algorithms and data structures.
program
analysis
algorithm design
```
problem;
3) Analyse the computational complexity of problems and the efficiency
```


Pseudocode and program analysis

Levels of abstraction in program analysis

Program implementation (code)
accessible to automated analysis; formal verification may be possible

Algorithm description (pseudocode)
accessible to analysis by humans; e.g., efficiency of the algorithm
different programming languages entail variation in data structures, etc.
informal representation, independent of implementation and architecture

Levels of abstraction in program analysis

Binary executable (equivalently, script + executable interpreter)
performance, i.e., resource requirements, on given hardware

Program implementation (code)
accessible to automated analysis; formal verification may be possible

Algorithm description (pseudocode)
accessible to analysis by humans; e.g., efficiency of the algorithm

Problem statement
open to theoretical investigation; complexity: best possible efficiency
influenced by compiler/interpreter choice and configuration, etc.
different programming languages entail variation in data structures, etc.
informal representation, independent of implementation and architecture
proofs of upper or lower bounds apply to any potential algorithm

Code development cycle

- Specify
- Function specification - what it should do
- Non-functional specification - how well it should do it
- Design
- Select appropriate algorithms and data structures
- Consider effectiveness/correctness - does it do what it is supposed to?
- Consider efficiency
- Size
- Speed
- Implement
- Create solution at low level

Design by contract

- Specify
- Function specification - what it should do
- Non-functional specification - how well it should do it
- Design
- Select appropriate algorithms and data structures
- Consider effectiveness/correctness - does it do what it is supposed to?
- Consider efficiency
- Size
"contracts" between specifier, designer, and programmer
- Speed
- Implement
- Create solution at low level

We need a way of specifying algorithms and their outcomes

Design by contract

- Specify
- Function specification - what it should do
- Non-functional specification - how well it should do it
- Design
- Select appropriate algorithms and data structures
- Consider effectiveness/correctness - does it do what it is supposed to?
- Consider efficiency
- Size
"contracts" between specifier, designer, and programmer
- Speed
- Implement
- Create solution at low level

We need a way of specifying algorithms and their outcomes

- Evaluate
- Debug, assess for syntactic \& semantic correctness
- Check performance (i.e., resource requirements)

Pseudocode as an informal specification

Algorithms are best discussed using pseudocode:

Insertion-Sort (A)
for $j=2$ to A. length
$k e y=A[j]$
$/ /$ Insert $A[j]$ into the sorted sequence $A[1 \ldots j-1]$.
$i=j-1$
while $i>0$ and $A[i]>$ key
$A[i+1]=A[i]$
$i=i-1$
$A[i+1]=k e y$

Since the analysis of an algorithm should occur at a level of abstraction higher than that of its practical implementation (as code), simple generally comprehensible notations are often more suitable than syntactically correct code in any given programming language.

Pseudocode as an informal specification

\author{
code
 ```
int prod = 1;
 for(int $i=0 ; i<n ; i++) \operatorname{prod}{ }^{*}=$ fact[i];

```
}
prod \(=1\)
for \(i\) in range( \(n\) ): prod * \(=\) fact \([i]\)

Program code is intended for computational processing by a compiler or interpreter.

Pseudocode is a representation of the semantics (meaning) of the code for a human reader.

The C/C++ code on top and the Python code at the bottom have equivalent outcomes if the initial state at the beginning of the block is equivalent.

As algorithms, they can be given a joint representation.

\section*{Pseudocode as an informal specification}

\section*{code}
```

int prod = 1;
for(int $i=0 ; i<n ; i++)$ prod ${ }^{*}=$ fact[[] ;

```
prod = 1
for \(i\) in range( \(n\) ): prod \({ }^{*}=\) fact \([i]\)
pseudocode
input: int \(n\), int array fact with \(\geq n\) elements
output: int prod
```

prod}\leftarrow

$$
\text { for int } i \text { in } 0 \text { to } n-1
$$

for int i in 0 to n-1

$$
\operatorname{prod} \leftarrow \text { fact }[i] * \text { prod }
$$

 prod}\leftarrow\mathrm{ fact[i] * prod
 end for
end for

$$
\operatorname{prod} \leftarrow 1
$$

```

\section*{Program flow graphs \({ }^{1}\)}


Figure 1.2: Flow graph for the factorial program.
\({ }^{1}\) F. Nielson, H. Riis Nielson, C. Hankin, Principles of Program Analysis, Heidelberg: Springer, 2005.

\section*{Decomposition}

In many procedural programming languages, including C and Python, code blocks that can be called from other code blocks are called functions.
Employing functions allows jumping to code that solve a certain task in a robust way, without needing to use the undesirable "goto" statement. \({ }^{1}\)

Breaking complex problems down into smaller pieces can make them more manageable. In procedural (and object oriented) programming languages, functions (and methods) are typically used for that purpose.
\[
\text { overall algorithm } \equiv \text { combine_functions(function }{ }_{1}, \text { function }_{2}, \ldots \text { ) }
\]

If the functions (or methods) for the smaller tasks have been designed by contract and are known to fulfill their respective purpose, e.g., supported by unit testing, it becomes easier to establish the correctness of the overall algorithm.
\({ }^{1}\) E. W. Dijkstra, "Go to statement considered harmful," Communications of the ACM 11(3), 147, 1968.

\section*{Procedural programming}

In many procedural programming languages, including C and Python, code blocks that can be called from other code blocks are called functions.

Role of functions in procedural programming:
- Functions are named
- Each function has a distinct task
- It may have its own variables
- It may call another function
- It may return a value
- It may accept arguments
\(x=\) multiply \((n, f a c t)\)
- Function parameters are the variables listed in the function's definition. Function arguments are the values passed to the function, which are assigned to the function's parameters at runtime.

\section*{Procedural programming}

In many procedural programming languages, including \(C\) and Python, code blocks that can be called from other code blocks are called functions. However, do not confuse procedural programming (as a programming paradigm) with functional programming, a name given to a very different approach (LISP, etc.).
- Functions are named
- Each function has a distinct task
- It may have its own variables
- It may call another function
- It may return a value
- It may accept arguments
\(x=\operatorname{multiply}(n, f a c t)\)
- Function parameters are the variables listed in the function's definition. Function arguments are the values passed to the function, which are assigned to the function's parameters at runtime.

\section*{Procedural programming}

\section*{code}
int prod \(=1 ;\)
for(int \(i=0 ; i<n ; i++) \operatorname{prod}\) *= fact[ [] ;
input: int \(n\), int array fact
with \(\geq n\) elements
output: int prod
```

prod}\leftarrow
for int i in 0 to n-1
prod}\leftarrow\mathrm{ fact[i] * prod
end for

```
prod \(=1\)
for \(i\) in range( \(n\) ):
    prod \({ }^{*}=\) fact \([i]\)

\section*{Procedural programming}
```

code
int multiply(int n, int* fact)
{
int prod = 1;
for(int i=0;i<n;i++) prod *= fact[i];
return prod;
}
def multiply(n, fact):
prod = 1
for i in range(n):
prod *= fact[i]
return prod

```
pseudocode
function multiply
input: int \(n\), int array fact with \(\geq n\) elements
output: int prod
\[
\operatorname{prod} \leftarrow 1
\]
\[
\text { for int } i \text { in } 0 \text { to } n-1
\]
\[
\operatorname{prod} \leftarrow \text { fact }[i] * \operatorname{prod}
\]
end for
return prod
end function

\section*{Pass by value and pass by reference}

Two major ways in which arguments can be passed to functions:
Argument passing by value


Argument passing by reference
initially, \(x \equiv 4\)\begin{tabular}{|c|c|}
\multicolumn{2}{c}{ variable name " \(x\) " } \\
\cline { 2 - 3 } & \(\begin{array}{c}\text { address } \\
\& x\end{array}\) \\
\hline
\end{tabular}

initially, \(y \equiv \& x\), hence *y \(\equiv 4\)

\section*{Pass by value and pass by reference}

Two major ways in which arguments can be passed to functions:
Argument passing by value


Argument passing by reference


\section*{Pass by value and pass by reference}

Two major ways in which arguments can be passed to functions:
Argument passing by value


Argument passing by reference


\section*{Pass by object reference}

In Python, object references are passed by value (i.e., "pass by object reference"):
Argument passing by object reference in Python (similarly, in Java)


\section*{Pass by object reference}

In Python, object references are passed by value (i.e., "pass by object reference"):
Argument passing by object reference in Python (similarly, in Java)


\section*{Pass by object reference}

In Python, object references are passed by value (i.e., "pass by object reference"):
Argument passing by object reference in Python (similarly, in Java)


\section*{Recursive functions}

\section*{Recursive function definitions}

Recursion can be used to define a function, e.g., for the geometric series
\[
f_{q}(0)=1 \text { and } f_{q}(k)=q^{k}+f_{q}(k-1) .
\]

The approach is applicable to any domain that is defined, or can be constructed, by induction.

Example: The set of integers \(\mathbb{N}\) can be constructed by stating that \(1 \in \mathbb{N}\) (base case), and for any \(k \in \mathbb{N}\), there is a successor element \(k+1 \in \mathbb{N}\).

It is applied by reducing a problem instance for a given argument value \(k\) to that for another, more elementary argument value \(k^{\prime}<k\). Here, the operator < signifies some order indicating closeness to the base case (smallest element).

Such constructions are often used to define mathematical sequences.

\section*{Recursive function definitions}

Recursion can be used to define a function, e.g., for the geometric series
\[
f_{q}(0)=1 \text { and } f_{q}(k)=q^{k}+f_{q}(k-1) \text {. }
\]

The approach is applicable to any domain that is defined, or can be constructed, by induction.


Such constructions are often used to define mathematical sequences.

\section*{Recursive function definitions}

Recursion can be used to define a function, e.g., for the geometric series
\[
f_{q}(0)=1 \text { and } f_{q}(k)=q^{k}+f_{q}(k-1) ; \quad f_{q}(k)=\left(1-q^{k+1}\right) /(1-q) .
\]

The approach is applicable to any domain that is defined, or can be constructed, by induction.

Example: The set of integers \(\mathbb{N}\) can be constructed by stating that \(1 \in \mathbb{N}\) (base case), and for any \(k \in \mathbb{N}\), there is a successor element \(k+1 \in \mathbb{N}\).

It is applied by reducing a problem instance for a given argument value \(k\) to that for another, more elementary argument value \(k^{\prime}<k\). Here, the operator < signifies some order indicating closeness to the base case (smallest element).

Such constructions are often used to define mathematical sequences. Recursively defined functions are not always best computed by recursion.

\section*{Recursion as an algorithm design strategy}

Recursion is the process of defining the solution to a problem (or the solution to a problem) in terms of a simpler or smaller instance of the same problem.


Image from: https://www.therussianstore.com/blog/the-history-of-nesting-dolls
Recursion is a form of decomposition:
\[
\text { solution }(k) \equiv \text { recursive_step( solution }(<k) \text { ) }
\]

\section*{Recursion as an algorithm design strategy}

Recursion is the process of defining the solution to a problem (or the solution to a problem) in terms of a simpler or smaller instance of the same problem.

The base case (or a base
 case) is reached when the problem has been simplified to the utmost

Image from: https://www.therussianstore.com/blog/the-history-of-nesting-dolls
Recursion is a form of decomposition:
\[
\begin{aligned}
& \text { solution }(k) \equiv \text { recursive_step( solution }(<k) \text { ) } \\
& \text { solution }(\perp) \equiv \text { base_case_solution }
\end{aligned}
\]

\section*{Recursion as an algorithm design strategy}

Recursion is the process of defining the solution to a problem (or the solution to a problem) in terms of a simpler or smaller instance of the same problem.


The base case (or a base case) is reached when the problem has been simplified to the utmost

Multiple recursion
decomposes a problem
into more than one simplified instance
Image from: https://www.therussianstore.com/blog/the-history-of-nesting-dolls
Recursion is a form of decomposition:
\[
\begin{aligned}
& \text { solution } \left.(k) \equiv \text { recursive_step( solution }(<k), \text { solution }_{2}(<k), \ldots\right) \\
& \text { solution }(\perp) \equiv \text { base_case_solution }
\end{aligned}
\]

\section*{Multiple recursion example}

The Fibonacci numbers constitute a mathematical sequence that is defined by multiple recursion:
\[
\begin{aligned}
F_{0} & =0 \\
F_{1} & =1 \\
F_{k} & =F_{k-1}+F_{k-2}, \text { for } k>1
\end{aligned}
\]
\[
0,1,1,2,3,5,8,13, \ldots
\]

While the definition is most conveniently given in the form of a recursion, the numerical implementation would usually proceed by iteration. Compare the code employing a loop with that obtained by a direct calque of the definition.
```

In [31]: 1 import time
k = 40
4 start = time.time()
5 print("Fibonacci nr.", k, "=", fibonacci_iter(k))
6 end = time.time()
print("Time required for iterative execution:", end - start, "s")
9 start = time.time()
10 print("Fibonacci nr.", k, "=", fibonacci_recur(k))
11 end = time.time()
1 2 print("Time required for naive recursive execution:", end - start, "s")

```
Fibonacci nr. \(40=102334155\)
Time required for iterative execution: 0.00019598007202148438 s
Fibonacci nr. \(40=102334155\)
Time required for naive recursive execution: 30.47756600379944 s

\section*{Multiple recursion example}

The Fibonacci numbers constitute a mathematical sequence that is defined by multiple recursion:
\[
\begin{aligned}
& F_{0}=0 \\
& F_{1}=1 \\
& F_{k}=F_{k-1}+F_{k-2}, \text { for } k>1
\end{aligned}
\]
\[
0,1,1,2,3,5,8,13, \ldots
\]

While the definition is most conveniently given in the form of a recursion, the numerical implementation would usually proceed by iteration. Compare the code employing a loop with that obtained by a direct calque of the definition.


\section*{Multiple recursion example}

The Fibonacci numbers constitute a mathematical sequence that is defined by multiple recursion:
\[
\begin{aligned}
& F_{0}=0 \\
& F_{1}=1 \\
& F_{k}=F_{k-1}+F_{k-2}, \text { for } k>1
\end{aligned}
\]
\[
0,1,1,2,3,5,8,13, \ldots
\]

While the definition is most conveniently given in the form of a recursion, the numerical implementation would usually proceed by iteration. Compare the code employing a loop with that obtained by a direct calque of the definition.


\section*{Converting an iterative to a recursive solution}

Loop structures can be equivalently transformed into recursions as follows:
iterative implementation
function do_iteratively input: argv
output: retv
declaration of local variables work
while condition
[single-step body]
end while
return retv
recursive implementation
function do_recursively
input: argv, work
output: retv, work
if condition then
[single-step body]
return do_recursively(argv, work)
else return retv, work

\section*{Converting an iterative to a recursive solution}

Loop structures can be equivalently transformed into recursions as follows:
iterative implementation
recursive implementation
function do_iteratively input: argv
output: retv
function do_recursively
input: argv, work
output: retv, work
declaration of local variables work
any other statements
while condition
[single-step body]
end while return retv
if condition then
[single-step body] return do_recursively(argv, work)
else return retv, work
separate initialization block

Example: Python code for prime factor decomposition.

\section*{Converting an iterative to a recursive solution}

Loop structures can be equivalently transformed into recursions as follows:
iterative implementation
def primfact_iter(n):
factors \(=[]\)
\(\mathrm{i}=2\)
while \(i<=n * *(1 / 2)\) :
while \(n \% i==0\) :
factors.append(i)
n /= i
\(i+=1\)
if \(n!=1\) :
factors.append(n)
return factors
Example: Python code for prime factor decomposition.

\section*{Converting an iterative to a recursive solution}

Loop structures can be equivalently transformed into recursions as follows:
iterative implementation
def primfact_iter(n):
factors = []
\(i=2\)
while \(i<=n * *(1 / 2)\) : while \(n \% i==0\) : factors.append(i) \(\mathrm{n} /=\mathrm{i}\) \(i+=1\)
if \(n!=1\) :
factors.append(n)
return factors
Example: Python code for prime
recursive implementation
def primfact_recur_body(n, factors, i):
if \(\mathrm{i}<=n * *(1 / 2)\) : while \(n \% i==0\) :
\(\rightarrow\) factors.append(i) \(\mathrm{n} /=\mathrm{i}\) \(i+=1\)
```

def primfact_recur(n):
factors = []
i = 2
n, factors, i = primfact_recur_body(n, factors, i)
if n!= 1:
factors.append(n)
return factors

```

\section*{Converting a recursive to an iterative solution}

For simple recursion over \(\mathbb{N}\), transformation into loop form is straightforward:
```

def geometric_series_recur(q, k):
if }\textrm{k}>0\mathrm{ :
return q**k + geometric_series_recur(q, k-1)
else:
return }

```
- begin with the base case
- apply loop construct to work upward
\[
f_{q}(k)=\sum_{0 \leq j \leq k} q^{j}
\]

\section*{Converting a recursive to an iterative solution}

For simple recursion over \(\mathbb{N}\), transformation into loop form is straightforward:
```

def geometric_series_recur(q, k):
if k>0:
return q**k + geometric_series_recur(q, k-1)
else: \# i.e., if k == 0
return }

```
- begin with the base case
- apply loop construct to work upward
\[
f_{q}(k)=\sum_{0 \leq j \leq k} q^{j}
\]
def geometric_series_iter( \(q, k\) ):
\(\mathrm{j}=0\)
retv = 1
while \(k>j\) :
j += 1
retv += q** \(^{\text {j }}\)
return retv

For multiple recursions or over domains with a more complex structure, loopbased equivalents can also be constructed, but in a less straightforward way.

\title{
CO2412 \\ Computational Thinking
}

\section*{Pseudocode and program analysis Recursive functions}```

