
Where opportunity creates success

CO2412
Computational Thinking

Formal verification
Performance and efficiency

219th October 2021CO2412

Design by contract

• Specify
– Function specification – what it should do
–Non-functional specification – how well it should do it

• Design
– Select appropriate algorithms and data structures

• Consider effectiveness/correctness – does it do
what it is supposed to?

• Consider efficiency
– Size
– Speed

• Implement
– Create solution at low level

We need a way of specifying
algorithms and their outcomes

“contracts” between specifier,
designer, and programmer

319th October 2021CO2412

Design by contract

• Specify
– Function specification – what it should do
–Non-functional specification – how well it should do it

• Design
– Select appropriate algorithms and data structures

• Consider effectiveness/correctness – does it do
what it is supposed to?

• Consider efficiency
– Size
– Speed

• Implement
– Create solution at low level

• Evaluate
–Debug, assess for syntactic & semantic correctness
– Check performance (i.e., resource requirements)

We need a way of evaluating
algorithms and their outcomes

“contracts” between specifier,
designer, and programmer

19th October 2021CO2412

Formal verification

519th October 2021CO2412

Verification, validation, and testing

Verification: Proof that the developed product complies with its specification.

– Where possible, provide a rigorous logical/mathematical proof;
alternatively, provide documents following agreed standards/procedures.

Testing: Use-case driven evaluation of the final (or alpha, or beta) product.

– The considered use cases should be representative.
– They should be as unrelated as possible to any concrete scenarios

considered during development, including the validation process.

develop-
ment

deploy-
ment

systematic

empirical

619th October 2021CO2412

Verification, validation, and testing

Verification: Proof that the developed product complies with its specification.

– Where possible, provide a rigorous logical/mathematical proof;
alternatively, provide documents following agreed standards/procedures.

Testing: Use-case driven evaluation of the final (or alpha, or beta) product.

– The considered use cases should be representative.
– They should be as unrelated as possible to any concrete scenarios

considered during development, including the validation process.
– Ideally, conducted by prospective users; if unavailable, “play the user.”

develop-
ment

deploy-
ment

systematic

empirical

developer-
driven

user-driven

719th October 2021CO2412

Verification, validation, and testing

Verification: Proof that the developed product complies with its specification.

– Where possible, provide a rigorous logical/mathematical proof;
alternatively, provide documents following agreed standards/procedures.

Validation: Empirical evaluation to what extent user the requirements are met.

– All requirements need to be covered and demonstrated at least once.
– Ideally, requirements are not identical with the specification. They should

be user-oriented; e.g., epics and user stories in a requirements analysis
from agile software engineering. Feedback from users is needed.

Testing: Use-case driven evaluation of the final (or alpha, or beta) product.

– The considered use cases should be representative.
– They should be as unrelated as possible to any concrete scenarios

considered during development, including the validation process.
– Ideally, conducted by prospective users; if unavailable, “play the user.”

819th October 2021CO2412

Verification, validation, and testing

Verification: Proof that the developed product complies with its specification.

– Where possible, provide a rigorous logical/mathematical proof;
alternatively, provide documents following agreed standards/procedures.

Validation: Empirical evaluation to what extent user the requirements are met.

– All requirements need to be covered and demonstrated at least once.
– Ideally, requirements are not identical with the specification. They should

be user-oriented; e.g., epics and user stories in a requirements analysis
from agile software engineering. Feedback from users is needed.

Testing: Use-case driven evaluation of the final (or alpha, or beta) product.

– The considered use cases should be representative.
– They should be as unrelated as possible to any concrete scenarios

considered during development, including the validation process.
– Ideally, conducted by prospective users; if unavailable, “play the user.”

Remark

Verification always has the meaning that something is demon-
strated to be true, particularly by logical reasoning. Validation
and testing have many meanings to different communities; the
distinction here is common in AI (e.g., validation set vs. test set).

919th October 2021CO2412

Verification, validation, and testing

Verification: Proof that the developed product complies with its specification.

– Where possible, provide a rigorous logical/mathematical proof;
alternatively, provide documents following agreed standards/procedures.

Validation: Empirical evaluation to what extent user the requirements are met.

– All requirements need to be covered and demonstrated at least once.
– Ideally, requirements are not identical with the specification. They should

be user-oriented; e.g., epics and user stories in a requirements analysis
from agile software engineering. Feedback from users is needed.

Testing: Use-case driven evaluation of the final (or alpha, or beta) product.

– The considered use cases should be representative.
– They should be as unrelated as possible to any concrete scenarios

considered during development, including the validation process.
– Ideally, conducted by prospective users; if unavailable, “play the user.”

Note

• The above is what we mean by formal verification.

• There can be no verification without a specification.

• It can be done by humans, using code or pseudocode.

1019th October 2021CO2412

Verification, validation, and testing

Verification: Proof that the developed product complies with its specification.

– Where possible, provide a rigorous logical/mathematical proof;
alternatively, provide documents following agreed standards/procedures.

Validation: Empirical evaluation to what extent user the requirements are met.

– All requirements need to be covered and demonstrated at least once.
– Ideally, requirements are not identical with the specification. They should

be user-oriented; e.g., epics and user stories in a requirements analysis
from agile software engineering. Feedback from users is needed.

Testing: Use-case driven evaluation of the final (or alpha, or beta) product.

– The considered use cases should be representative.
– They should be as unrelated as possible to any concrete scenarios

considered during development, including the validation process.
– Ideally, conducted by prospective users; if unavailable, “play the user.”

Note

• The above is what we mean by formal verification.

• There can be no verification without a specification.

• It can be done by humans, using code or pseudocode.

• It can also be done computationally (automated verification); in
that case, either the programming language must be restricted
severely, or it is only a model of the program that can be verified.

• The latter is known as model checking. It is limited by the
accuracy and extent of the information provided in the model.

1119th October 2021CO2412

Program flow graphs1

1F. Nielson, H. Riis Nielson, C. Hankin,
Principles of Program Analysis,
Heidelberg: Springer, 2005.

1219th October 2021CO2412

Preconditions and postconditions

For purposes of formal analysis, the program flow is analysed step by step, e.g.,
at the instruction (statement) level, at the level of blocks of code that form a
coherent unit, or at the level of functions or methods.

Precondition: State of the program at a point directly before the considered unit.
This may include assumptions taken from the design contract or specification.

Postcondition: State of the program at a point directly after the considered unit,
assuming that the precondition was fulfilled at the point directly before it.

Example

As part of a development project, we need a function grtfrac(x, y)
that takes two floating-point arguments and returns the one with
the greater fractional part; e.g., grtfrac(2.7, 3.6) is to return 2.7,
because “.7” is greater than “.6”. In design by contract, the caller,
not the called method needs to guarantee the precondition.

1319th October 2021CO2412

Preconditions and postconditions

For purposes of formal analysis, the program flow is analysed step by step, e.g.,
at the instruction (statement) level, at the level of blocks of code that form a
coherent unit, or at the level of functions or methods.

Precondition: State of the program at a point directly before the considered unit.
This may include assumptions taken from the design contract or specification.

Postcondition: State of the program at a point directly after the considered unit,
assuming that the precondition was fulfilled at the point directly before it.

Example

As part of a development project, we need a function grtfrac(x, y)
that takes two floating-point arguments and returns the one with
the greater fractional part; e.g., grtfrac(2.7, 3.6) is to return 2.7,
because “.7” is greater than “.6”. In design by contract, the caller,
not the called method needs to guarantee the precondition.

1419th October 2021CO2412

Preconditions and postconditions

For purposes of formal analysis, the program flow is analysed step by step, e.g.,
at the instruction (statement) level, at the level of blocks of code that form a
coherent unit, or at the level of functions or methods.

Precondition: State of the program at a point directly before the considered unit.
This may include assumptions taken from the design contract or specification.

Postcondition: State of the program at a point directly after the considered unit,
assuming that the precondition was fulfilled at the point directly before it.

Example

As part of a development project, we need a function grtfrac(x, y)
that takes two floating-point arguments and returns the one with
the greater fractional part; e.g., grtfrac(–2.7, –1.8) is to return –2.7,
because “.3” (or –0.7) is greater than “.2” (or –0.8).

1519th October 2021CO2412

Preconditions and postconditions

def grtfrac(x, y):
 if (x - x//1) > (y - y//1):
 return x
 else:
 return y

Example

As part of a development project, we need a function grtfrac(x, y)
that takes two floating-point arguments and returns the one with
the greater fractional part; e.g., grtfrac(2.7, 3.6) is to return 2.7,
because “.7” is greater than “.6”.

if (x - x//1) > (y - y//1):

return x return y

true false

1619th October 2021CO2412

Preconditions and postconditions

def grtfrac(x, y):
 if (x - x//1) > (y - y//1):
 return x
 else:
 return y

if (x - x//1) > (y - y//1):

return x return y

initial state S0

true false
S1 S2

final state S3 final state S4

Example

As part of a development project, we need a function grtfrac(x, y)
that takes two floating-point arguments and returns the one with
the greater fractional part; e.g., grtfrac(2.7, 3.6) is to return 2.7,
because “.7” is greater than “.6”.

1719th October 2021CO2412

Preconditions and postconditions

def grtfrac(x, y):
 if (x - x//1) > (y - y//1):
 return x
 else:
 return y

if (x - x//1) > (y - y//1):

return x return y

initial state S0

true false
S1 S2

final state S3 final state S4

transitions S0 → S1, S2

transition S2 → S4transition S1 → S3

Example

As part of a development project, we need a function grtfrac(x, y)
that takes two floating-point arguments and returns the one with
the greater fractional part; e.g., grtfrac(2.7, 3.6) is to return 2.7,
because “.7” is greater than “.6”.

1819th October 2021CO2412

Preconditions and postconditions

def grtfrac(x, y):
 if (x - x//1) > (y - y//1):
 return x
 else:
 return y

Note

Consider the statement “return x” from transition S1 → S3:

– The execution state S1 is the precondition of S1 → S3.

– The execution state S3 is the postcondition of S1 → S3.

if (x - x//1) > (y - y//1):

return x return y

initial state S0

true false
S1 S2

final state S3
final state S4

transitions S0 → S1, S2

transition S2 → S4transition S1 → S3

1919th October 2021CO2412

Preconditions and postconditions

def grtfrac(x, y):
 if (x - x//1) > (y - y//1):
 return x
 else:
 return y

if (x - x//1) > (y - y//1):

return x return y

initial state S0

true false
S1 S2

final state S3
final state S4

transitions S0 → S1, S2

transition S2 → S4transition S1 → S3

S0: x and y are floating-point numbers (by contract!).
S1: x, y as above; the fractional part of x is greater than that of y.
S2: x, y as above; the fractional part of y is greater than that of x, or equal.
S3: The fractional part of x is the greater one, and x was returned.
S4: The fractional part of y is the greater one (or they are equal); y was returned.

2019th October 2021CO2412

Problem: Matching natural numbers

def natmatch_iter(x, y):
 for i in range(len(x)):
 for j in range(i+1, len(x)):
 if (x[i]+x[j] == y) and (x[i] != x[j]):
 return [x[i], x[j]]
 return []

Specification

The function takes a list of natural numbers x as its first argument
and a natural number y as its second argument. If in the list x,
there are elements a and b which are not equal and add up to
exactly y, the list [a, b] is returned; otherwise, [] is returned.

Examples:

If x is [17, 10, 4, 1] and y is 21,
return any of [17, 4] or [4, 17].

If x is the same as above and y
is 12, return the empty list [].

2119th October 2021CO2412

Problem: Matching natural numbers

def natmatch_iter(x, y):
 for i in range(len(x)):
 for j in range(i+1, len(x)):
 if (x[i]+x[j] == y) and (x[i] != x[j]):
 return [x[i], x[j]]
 return []

Specification

The function takes a list of natural numbers x as its first argument
and a natural number y as its second argument. If in the list x,
there are elements a and b which are not equal and add up to
exactly y, the list [a, b] is returned; otherwise, [] is returned.

def natmatch_recur_core(x, y, l):
 if 1 >= l:
 return []
 else:
 for i in range(l-1):
 if (x[i]+x[l-1] == y) and (x[i] != x[l-1]):
 return [x[i], x[l-1]]
 return natmatch_recur_core(x, y, l-1)

def natmatch_recur(x, y):
 return natmatch_recur_core(x, y, len(x))

2219th October 2021CO2412

Verification of loop constructs

def natmatch_iter(x, y):
 for i in range(len(x)):
 for j in range(i+1, len(x)):
 if (x[i]+x[j] == y) and (x[i] != x[j]):
 return [x[i], x[j]]
 return []

for i in range(len(x)):

for j in range(i+1, len(x)):

return []

initial state S0

end

final
state S3

S2

next
S1

Specification

The function takes a list of natural numbers x as its first argument
and a natural number y as its second argument. If in the list x,
there are elements a and b which are not equal and add up to
exactly y, the list [a, b] is returned; otherwise, [] is returned.

2319th October 2021CO2412

Verification of loop constructs

def natmatch_iter(x, y):
 for i in range(len(x)):
 for j in range(i+1, len(x)):
 if (x[i]+x[j] == y) and (x[i] != x[j]):
 return [x[i], x[j]]
 return []

for i in range(len(x)):

for j in range(i+1, len(x)):

if (x[i]+x[j] == y) and (x[i] != x[j]):

return []

initial state S0

end

next
S4

final
state S3

end

S2

next
S1

S5

Specification

The function takes a list of natural numbers x as its first argument
and a natural number y as its second argument. If in the list x,
there are elements a and b which are not equal and add up to
exactly y, the list [a, b] is returned; otherwise, [] is returned.

2419th October 2021CO2412

Verification of loop constructs

def natmatch_iter(x, y):
 for i in range(len(x)):
 for j in range(i+1, len(x)):
 if (x[i]+x[j] == y) and (x[i] != x[j]):
 return [x[i], x[j]]
 return []

for i in range(len(x)):

for j in range(i+1, len(x)):

if (x[i]+x[j] == y) and (x[i] != x[j]):

return [x[i], x[j]]

return []

initial state S0

end

next
S4

final state S3

end

S2

next
S1

S5

true
S6

false

S8

Specification

The function takes a list x
and a natural number y
as arguments. If in the
list x, there are elements
a and b which are not
equal and add up to y,
the list [a, b] is returned;
otherwise, [] is returned. final state S7

2519th October 2021CO2412

Verification of loop constructs

for i in range(len(x)):

for j in range(i+1, len(x)):

if (x[i]+x[j] == y) and (x[i] != x[j]):

return [x[i], x[j]]

return []

initial state S0

end

next
S4

final state S3

end

S2

next
S1

S5

true
S6

false

S8

S0: x and y given as specified.

S1, first iteration: i ≡ 0, len(x) ≥ 1.

S4, first iteration: i ≡ 0, j ≡ 1,
len(x) ≥ 2.

S8, first iteration: As above, and
x[0] + x[1] do not match.

final state S7

2619th October 2021CO2412

Verification of loop constructs

for i in range(len(x)):

for j in range(i+1, len(x)):

if (x[i]+x[j] == y) and (x[i] != x[j]):

return [x[i], x[j]]

return []

initial state S0

end

next
S4

final state S3

end

S2

next
S1

S5

true
S6

false

S8

S0: x and y given as specified.

S1, first iteration: i ≡ 0, len(x) ≥ 1.

S4, first iteration: i ≡ 0, j ≡ 1,
len(x) ≥ 2.

S8, first iteration: As above, and
x[0] + x[1] do not match.

Task now: Find a loop invariant,
one that holds every time that
the execution states S4 and S8
inside the inner loop are visited.

(Still assuming that i remains 0.)
final state S7

2719th October 2021CO2412

Verification of loop constructs

for i in range(len(x)):

for j in range(i+1, len(x)):

if (x[i]+x[j] == y) and (x[i] != x[j]):

return [x[i], x[j]]

return []

initial state S0

end

next
S4

final state S3

end

S2

next
S1

S5

true
S6

final state S7

false

S8

S0: x and y given as specified.

S1, first iteration: i ≡ 0, len(x) ≥ 1.

S4, invariant: i ≡ 0, 0 < j < len(x),
and x[0] does not match with
any x[k] for indices k < j.

S8, invariant: As above, but
x[0] does not match with any
x[k] for indices k ≤ j.

(Still assuming that i remains 0.)

2819th October 2021CO2412

Verification of loop constructs

for i in range(len(x)):

for j in range(i+1, len(x)):

if (x[i]+x[j] == y) and (x[i] != x[j]):

return [x[i], x[j]]

return []

initial state S0

end

next
S4

final state S3

end

S2

next
S1

S5

true
S6

final state S7

false

S8

S0: x and y given as specified.

S1, first iteration: i ≡ 0, len(x) ≥ 1.

S4, invariant: i ≡ 0, 0 < j < len(x),
and x[0] does not match with
any x[k] for indices k < j.

S8, invariant: As above, but
x[0] does not match with any
x[k] for indices k ≤ j.

(Still assuming that i remains 0.)

Remark

This proof technique is called mathematical induction:
– We know that it is true for the base case (j = 0).
– We know that if it is true for j, it is also true for j+1.
– Therefore it is true for all j.

We did this for the inner loop, still assuming that the outer loop is
in its first iteration (i = 0). Now we apply the same technique there.

2919th October 2021CO2412

Verification of loop constructs

for i in range(len(x)):

for j in range(i+1, len(x)):

if (x[i]+x[j] == y) and (x[i] != x[j]):

return [x[i], x[j]]

return []

initial state S0

end

next
S4

final state S3

end

S2

next
S1

S5

true
S6

false

S8

S0: x and y given as specified.

S1, for i ≡ 0: i ≡ 0, len(x) ≥ 1.

S4, for i ≡ 0: i ≡ 0, 0 < j < len(x),
and x[0] does not match with
any x[k] for indices k < j.

S8, for i ≡ 0: As above, but
x[0] does not match with any
x[k] for indices k ≤ j.

S5, for i ≡ 0: i ≡ 0, and after
trying all indices 0 < j < len(x),
x[0] was not found to match any.

final state S7

3019th October 2021CO2412

Verification of loop constructs

for i in range(len(x)):

for j in range(i+1, len(x)):

if (x[i]+x[j] == y) and (x[i] != x[j]):

return [x[i], x[j]]

return []

initial state S0

end

next
S4

final state S3

end

S2

next
S1

S5

true
S6

final state S7

false

S8

S0: x and y given as specified.

S1, invariant: 0 ≤ i < len(x).

S4, invariant: 0 ≤ i < len(x),
i < j < len(x), all indices smaller
than i did not yield a match,
and x[i] does not match with
any x[k] for indices i < k < j.

S8, invariant: As above, and
x[i] does not match with any
x[k] for indices i < k ≤ j.

S5, invariant: As above, and we
now know that x[i] does not yield
a match with any other element.
(And neither did any smaller i.)

3119th October 2021CO2412

Verification of loop constructs

S0: x and y given as specified.

S1: 0 ≤ i < len(x).

S5: No combination of any x[i]
that was tried so far, with any
x[j] from the list where i < j,
produces a valid match.

for i in range(len(x)):

for j in range(i+1, len(x)):

if (x[i]+x[j] == y) and (x[i] != x[j]):

return [x[i], x[j]]

return []

initial state S0

end

next
S4

final state S3

end

S2

next
S1

S5

true
S6

final state S7

false

S8

3219th October 2021CO2412

Verification of loop constructs

S0: x and y given as specified.

S1: 0 ≤ i < len(x).

S5: No combination of any x[i]
that was tried so far, with any
x[j] from the list where i < j,
produces a valid match.

S6: x[i] and x[j] are a match.

S7: Match found and returned.

S2: End of list, all pairs of ele-
ments were tried, none matched.

S3: No match; [] was returned.

for i in range(len(x)):

for j in range(i+1, len(x)):

if (x[i]+x[j] == y) and (x[i] != x[j]):

return [x[i], x[j]]

return []

initial state S0

end

next
S4

final state S3

end

S2

next
S1

S5

true
S6

final state S7

false

S8

19th October 2021CO2412

Performance and
efficiency

3419th October 2021CO2412

Binary executable (equivalently, script + executable interpreter)

Program implementation (code)

Algorithm description (pseudocode)

Problem statement

Levels of abstraction in program analysis

performance, i.e., resource
requirements, on given hardware

influenced by compiler/interpreter
choice and configuration, etc.

accessible to automated analysis;
formal verification may be possible

different programming languages
entail variation in data structures, etc.

accessible to analysis by humans;
e.g., efficiency of the algorithm

informal representation, independent
of implementation and architecture

open to theoretical investigation;
complexity: best possible efficiency

proofs of upper or lower bounds
apply to any potential algorithm

3519th October 2021CO2412

Performance as a function of the problem size

Usually we are not interested in the resource requirements of a single execution,
but in understanding how the requirements behave as a function of a charac-
teristic quantity, the problem size n, that describes the magnitude of the task.

We distinguish between:

– Time requirements, describing the computing time. Where possible, this
should be expressed in terms of actual CPU time (+ I/O time); the opera-
ting system will usually distribute CPU time between multiple processes.

– Memory (or space) requirements, describing the memory allocated to
the program; depending on definition, this may include I/O size.

3619th October 2021CO2412

Performance as a function of the problem size

Usually we are not interested in the resource requirements of a single execution,
but in understanding how the requirements behave as a function of a charac-
teristic quantity, the problem size n, that describes the magnitude of the task.

We distinguish between:

– Time requirements, describing the computing time. Where possible, this
should be expressed in terms of actual CPU time (+ I/O time); the opera-
ting system will usually distribute CPU time between multiple processes.

– Memory (or space) requirements, describing the memory allocated to
the program; depending on definition, this may include I/O size.

– Worst-case performance, which for any given problem size n corres-
ponds to the input/special case of size n with the greatest requirements.

– Average-case performance, over many representative cases of size n.

There is also “best-case performance,” but usually not as an evaluation criterion.

3719th October 2021CO2412

Algorithm efficiency as a function of problem size

Usually we are not interested in the efficiency of an algorithm for a single input
value, but in understanding how the efficiency behaves as a function of a charac-
teristic quantity, the problem size n, that describes the magnitude of the task.

We distinguish between:

– Time efficiency measure(s), describing CPU time in an abstract way; one
possible measure for it is the number of code/pseudocode instructions.

– Space or memory efficiency measure(s), describing the memory in an
abstract way, e.g., by the number of elementary values stored in varia-
bles, data structures, or files; this usually excludes the initial input.

– Worst-case efficiency, which for any given problem size n corresponds
to the special case of size n with the greatest computing time/memory.

– Average-case efficiency, over all (or many representative) cases of size n.

There is also “best-case efficiency,” but usually not as an evaluation criterion.

3819th October 2021CO2412

Algorithm efficiency as a function of problem size

Usually we are not interested in the efficiency of an algorithm for a single input
value, but in understanding how the efficiency behaves as a function of a charac-
teristic quantity, the problem size n, that describes the magnitude of the task.

We distinguish between:

– Time efficiency measure(s), describing CPU time in an abstract way; one
possible measure for it is the number of code/pseudocode instructions.

– Space or memory efficiency measure(s), describing the memory in an
abstract way, e.g., by the number of elementary values stored in varia-
bles, data structures, or files; this usually excludes the initial input.

– Worst-case efficiency, which for any given problem size n corresponds
to the special case of size n with the greatest computing time/memory.

– Average-case efficiency, over all (or many representative) cases of size n.

There is also “best-case efficiency,” but usually not as an evaluation criterion.

Observation

Performance analysis is carried out by measurements; it is usually
very hard to determine the worst case, therefore it is common to
describe the average-case performance, e.g., from random input.

Algorithm efficiency can consider both the average and the worst
case, but the average case usually requires a statistical analysis.
Statements on the worst case can be very straightforward.

3919th October 2021CO2412

Example: Fibonacci sequence

recursive code
(with store-and-recall)

iterative code

4019th October 2021CO2412

Example: Number matching

recursive code

iterative code

4119th October 2021CO2412

Asymptotic efficiency (or performance)

Often we are most interested in the qualitative scaling behaviour of algorithms.

For this purpose, Landau notation is used,1 also known as “big O notation.” For
any given efficiency or requirements measure, this is obtained as follows:

– Eliminate all except the leading contribution, i.e., the one that dominates
the measure for large values of n. It is the one that grows fastest:

– From 3n3 + 12n + 17, we retain only 3n3.
– From 16·2n + 5n3, we retain only 16·2n.
– If you are unsure, insert n = 1000 and see which term is greatest.

– Eliminate constant coefficients; 3n3 becomes O(n3), 16·2n becomes O(2n).

1Named for Edmund Landau (1877 – 1938) who developed this notation for infinitesimal calculus.

4219th October 2021CO2412

Asymptotic efficiency (or performance)

Often we are most interested in the qualitative scaling behaviour of algorithms.

For this purpose, Landau notation is used,1 also known as “big O notation.” For
any given efficiency or requirements measure, this is obtained as follows:

– Eliminate all except the leading contribution, i.e., the one that dominates
the measure for large values of n. It is the one that grows fastest:

– From 3n3 + 12n + 17, we retain only 3n3.
– From 16·2n + 5n3, we retain only 16·2n.
– If you are unsure, insert n = 1000 and see which term is greatest.

– Eliminate constant coefficients; 3n3 becomes O(n3), 16·2n becomes O(2n).

If an algorithm includes 3n3 + 12n + 17 instructions in the worst case, we can
say, it is in time efficiency class O(n3), or simply, it has time efficiency O(n3).

1Named for Edmund Landau (1877 – 1938) who developed this notation for infinitesimal calculus.

Where opportunity creates success

CO2412
Computational Thinking

Formal verification
Performance and efficiency

