
Where opportunity creates success

CO2412
Computational Thinking

Formal verification #2
Algorithmic efficiency #2
Terminology and building a glossary



26th October 2021CO2412

Formal verification #2
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Preconditions and postconditions

def grtfrac(x, y):
    if (x - x//1) > (y - y//1):
        return x
    else:
        return y

Note

Consider the statement “return x” from transition S1  → S3:

– The execution state S1 is the precondition of S1  → S3.

– The execution state S3 is the postcondition of S1  → S3.

if (x - x//1) > (y - y//1):

return x return y

initial state S0

true false
S1 S2

final state S3
final state S4

transitions S0  → S1, S2

transition S2  → S4transition S1  → S3
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Initial and final conditions matching the specification

def grtfrac(x, y):
    if (x - x//1) > (y - y//1):
        return x
    else:
        return y

if (x - x//1) > (y - y//1):

return x return y

initial state S0

true false
S1 S2

final state S3
final state S4

transitions S0  → S1, S2

transition S2  → S4transition S1  → S3

S0: x and y are floating-point numbers (by specification).
S1: x, y as above; the fractional part of x is greater than that of y.
S2: x, y as above; the fractional part of y is greater than that of x, or equal.
S3: The fractional part of x is the greater one, and x was returned.
S4: The fractional part of y is greater (or they are equal); y was returned.
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Loop invariants

for i in range(len(x)):

for j in range(i+1, len(x)):

if (x[i]+x[j] == y) and (x[i] != x[j]):

return [x[i], x[j]]

return []

initial state S0

end

next
S4

final state S3

end

S2

next
S1

S5

true
S6

final state S7

false

S8

S0: x and y given as specified.

S1, invariant: 0 ≤ i < len(x).

S4, invariant: 0 ≤ i < len(x),
i < j < len(x), all indices smaller 
than i did not yield a match,
and x[i] does not match with
any x[k] for indices i < k < j.

S8, invariant: As above, and
x[i] does not match with any
x[k] for indices i < k ≤ j.

S5, invariant: As above, and we 
now know that x[i] does not yield 
a match with any other element.
(And neither did any smaller i.)
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Initial and final conditions

S0: x and y given as specified.

S1: 0 ≤ i < len(x).

S5: No combination of any x[i]
that was tried so far, with any
x[j] from the list where i < j,
produces a valid match.

S6: x[i] and x[j] are a match.

S7: Match found and returned.

S2: End of list, all pairs of ele-
ments were tried, none matched.

S3: No match; [] was returned.

for i in range(len(x)):

for j in range(i+1, len(x)):

if (x[i]+x[j] == y) and (x[i] != x[j]):

return [x[i], x[j]]

return []

initial state S0

end

next
S4

final state S3

end

S2

next
S1

S5

true
S6

final state S7

false

S8
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Application to debugging

Breakpoints at:

– S0, output x and y

– S3, output status
message

– S7, output i, j, x[i], x[j],
and their sum

– S8, output i, j, x[i], x[j],
and their sum

for i in range(len(x)):

for j in range(i+1, len(x)):

if (x[i]+x[j] == y) and (x[i] != x[j]):

return [x[i], x[j]]

return []

initial state S0

end

next
S4

final state S3

end

S2

next
S1

S5

true
S6

final state S7

false

S8
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Algorithmic
efficiency #2
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Average performance of Fibonacci codes

recursive code
(with store-and-recall)

iterative code

time requirements 
are linear in n

notation: O(n)

“order of n”
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Average performance of number-matching codes

recursive code

iterative code

time requirements 
are quadratic in n

notation: O(n2)

“ order of n2 ”
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Algorithm efficiency as a function of problem size

Usually we are not interested in the efficiency of an algorithm for a single input 
value, but in understanding how the efficiency behaves as a function of a charac-
teristic quantity, the problem size n, that describes the magnitude of the task.

We distinguish between:

– Time efficiency measure(s), describing CPU time in an abstract way; one 
possible measure for it is the number of code/pseudocode instructions.

– Space or memory efficiency measure(s), describing the memory in an 
abstract way, e.g., by the number of elementary values stored in varia-
bles, data structures, or files; this usually excludes the initial input.

– Worst-case efficiency, which for any given problem size n corresponds 
to the special case of size n with the greatest computing time/memory.

– Average-case efficiency, over all (or many representative) cases of size n.

There is also “best-case efficiency,” but usually not as an evaluation criterion.
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Algorithm efficiency as a function of problem size

Usually we are not interested in the efficiency of an algorithm for a single input 
value, but in understanding how the efficiency behaves as a function of a charac-
teristic quantity, the problem size n, that describes the magnitude of the task.

We distinguish between:

– Time efficiency measure(s), describing CPU time in an abstract way; one 
possible measure for it is the number of code/pseudocode instructions.

– Space or memory efficiency measure(s), describing the memory in an 
abstract way, e.g., by the number of elementary values stored in varia-
bles, data structures, or files; this usually excludes the initial input.

– Worst-case efficiency, which for any given problem size n corresponds 
to the special case of size n with the greatest computing time/memory.

– Average-case efficiency, over all (or many representative) cases of size n.

There is also “best-case efficiency,” but usually not as an evaluation criterion.

Remark

There is no universal rule for how the problem size n should be 
defined. It is up to the person analysing an algorithm to define 
it appropriately. It should describe how complicated the task is.

Common choices are the length of the input (e.g., if given as an 
array or string), the value passed as of one of the arguments of 
a function, or the number of elements stored in a data structure.
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Asymptotic efficiency

Often we are most interested in the qualitative scaling behaviour of algorithms.

For this purpose, Landau notation is used,1 also known as “big O notation.” For 
any given efficiency measure, this is obtained as follows:

– Eliminate all except the leading contribution, i.e., the one that dominates 
the measure for large values of n. It is the one that grows fastest:

– From 3n3 + 12n + 17, we retain only 3n3.
– From 16·2n + 5n3, we retain only 16·2n.
– If you are unsure, insert n = 1000 and see which term is greatest.

– Eliminate constant coefficients; 3n3 becomes O(n3), 16·2n becomes O(2n).

1Named for Edmund Landau (1877 – 1938) who developed this notation for infinitesimal calculus.
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Asymptotic efficiency

Often we are most interested in the qualitative scaling behaviour of algorithms.

For this purpose, Landau notation is used,1 also known as “big O notation.” For 
any given efficiency measure, this is obtained as follows:

– Eliminate all except the leading contribution, i.e., the one that dominates 
the measure for large values of n. It is the one that grows fastest:

– From 3n3 + 12n + 17, we retain only 3n3.
– From 16·2n + 5n3, we retain only 16·2n.
– If you are unsure, insert n = 1000 and see which term is greatest.

– Eliminate constant coefficients; 3n3 becomes O(n3), 16·2n becomes O(2n).

If an algorithm includes 3n3 + 12n + 17 instructions in the worst case, we can 
say, it is in time efficiency class O(n3), or simply, it has time efficiency O(n3).

1Named for Edmund Landau (1877 – 1938) who developed this notation for infinitesimal calculus.
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Asymptotic efficiency

Often we are most interested in the qualitative scaling behaviour of algorithms.

For this purpose, Landau notation is used,1 also known as “big O notation.” For 
any given efficiency measure, this is obtained as follows:

– Eliminate all except the leading contribution, i.e., the one that dominates 
the measure for large values of n. It is the one that grows fastest:

– From 3n3 + 12n + 17, we retain only 3n3.
– From 16·2n + 5n3, we retain only 16·2n.
– If you are unsure, insert n = 1000 and see which term is greatest.

– Eliminate any leading factors; 3n3 becomes O(n3), 16·2n becomes O(2n).

If an algorithm includes 3n3 + 12n + 17 instructions in the worst case, we can 
say, it is in time efficiency class O(n3), or simply, it has time efficiency O(n3).

1Named for Edmund Landau (1877 – 1938) who developed this notation for infinitesimal calculus.

Observation

Landau notation describes the “shape of the curve” for great n.

The asymptotic efficiency class of an algorithm is the same as the 
asymptotic performance class of any reasonable implementation.

For most algorithms, the distinction between the average and the 
worst case disappears if considered in terms of Landau notation.
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Asymptotic efficiency

Often we are most interested in the qualitative scaling behaviour of algorithms.

For this purpose, Landau notation is used,1 also known as “big O notation.” For 
any given efficiency or requirements measure, this is obtained as follows:

– Eliminate all except the leading contribution, i.e., the one that dominates 
the measure for large values of n. It is the one that grows fastest:

– From 3n3 + 12n + 17, we retain only 3n3.
– From 16·2n + 5n3, we retain only 16·2n.
– If you are unsure, insert n = 1000 and see which term is greatest.

– Eliminate any leading factors; 3n3 becomes O(n3), 16·2n becomes O(2n).

If an algorithm includes 3n3 + 12n + 17 instructions in the worst case, we can 
say, it is in time efficiency class O(n3), or simply, it has time efficiency O(n3).

1Named for Edmund Landau (1877 – 1938) who developed this notation for infinitesimal calculus.

Examples

The Fibonacci algorithms have O(n) time and space efficiency.

The number matching algorithms have O(n2) time efficiency; the 
iterative one has O(1) space efficiency, the recursive one O(n).
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Asymptotic efficiency

Often we are most interested in the qualitative scaling behaviour of algorithms.

For this purpose, Landau notation is used,1 also known as “big O notation.” For 
any given efficiency or requirements measure, this is obtained as follows:

– Eliminate all except the leading contribution, i.e., the one that dominates 
the measure for large values of n. It is the one that grows fastest:

– From 3n3 + 12n + 17, we retain only 3n3.
– From 16·2n + 5n3, we retain only 16·2n.
– If you are unsure, insert n = 1000 and see which term is greatest.

– Eliminate any leading factors; 3n3 becomes O(n3), 16·2n becomes O(2n).

If an algorithm includes 3n3 + 12n + 17 instructions in the worst case, we can 
say, it is in time efficiency class O(n3), or simply, it has time efficiency O(n3).

1Named for Edmund Landau (1877 – 1938) who developed this notation for infinitesimal calculus.

Examples

The Fibonacci algorithms have O(n) time and space efficiency.

The number matching algorithms have O(n2) time efficiency; the 
iterative one has O(1) space efficiency,1 the recursive one O(n).

Note

1Unless you count the input size, which would contribute in O(n).
  This is why input size is usually excluded from space efficiency.
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Asymptotic efficiency

Often we are most interested in the qualitative scaling behaviour of algorithms.

For this purpose, Landau notation is used,1 also known as “big O notation.” For 
any given efficiency or requirements measure, this is obtained as follows:

– Eliminate all except the leading contribution, i.e., the one that dominates 
the measure for large values of n. It is the one that grows fastest:

– From 3n3 + 12n + 17, we retain only 3n3.
– From 16·2n + 5n3, we retain only 16·2n.
– If you are unsure, insert n = 1000 and see which term is greatest.

– Eliminate any leading factors; 3n3 becomes O(n3), 16·2n becomes O(2n).

If an algorithm includes 3n3 + 12n + 17 instructions in the worst case, we can 
say, it is in time efficiency class O(n3), or simply, it has time efficiency O(n3).

1Named for Edmund Landau (1877 – 1938) who developed this notation for infinitesimal calculus.

Examples

The Fibonacci algorithms have O(n) time and space efficiency.

The number matching algorithms have O(n2) time efficiency; the 
iterative one has O(1) space efficiency,1 the recursive one O(n).

Is this the best possible asymptotic efficiency, or can it be done in 
a better way? This is a topic both for algorithm design (find better 
solutions) and complexity theory (prove general lower bounds).

Note

1Unless you count the input size, which would contribute in O(n).
  This is why input size is usually excluded from space efficiency.
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Why does the Fibonacci algorithm take linear time?

def fibonacci_iter(n):

    fibo = [0, 1]

    for k in range(2, n+1):

        fibo.append(fibo[k-1] + fibo[k-2])

    return fibo[n]

2 instructions

loop executed n – 1 times:
– 1 instruction for the loop index
– 4 instructions

1 instruction

5(n – 1) + 3  =  5n – 2 instructions

O(n) time efficiency
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Why does the Fibonacci algorithm take linear time?

def fibonacci_iter(n):

    fibo = [0, 1]

    for k in range(2, n+1):

        fibo.append(fibo[k-1] + fibo[k-2])

    return fibo[n]

2 instructions

loop executed n – 1 times:
– 1 instruction for the loop index
– 4 instructions

1 instruction

5(n – 1) + 3  =  5n – 2 instructions

O(n) time efficiency

The number of “instructions” assumed above is rather arbitrary. Asymptotic 
efficiency analysis simplifies this. In particular, any constants become “O(1)”.
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Why does the Fibonacci algorithm take linear time?

def fibonacci_iter(n):

    fibo = [0, 1]

    for k in range(2, n+1):

        fibo.append(fibo[k-1] + fibo[k-2])

    return fibo[n]

O(1) instructions

loop executed O(n) times:

– O(1) instructions

O(1) instructions

O(n · 1) + O(1)  =  O(n) instructions

O(n) time efficiency

The number of “instructions” assumed above is rather arbitrary. Asymptotic 
efficiency analysis simplifies this. In particular, any constants become “O(1)”.
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Why does our matching code take quadratic time?

def natmatch_iter(x, y):

    for i in range(len(x)):

        for j in range(i+1, len(x)):

            if (x[i]+x[j] == y) and (x[i] != x[j]):

                return [x[i], x[j]]

    return []

Note: Input size n given by len(x)

loop executed O(n) times:

– loop executed O(n) times:

• O(1) instructions

• O(1) optional instructions

O(1) optional instructions

O(n) · O(n·1) + O(1)  =  O(n2) instructions

O(n2) time efficiency
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Memory efficiency evaluation

def natmatch_iter(x, y):

    for i in range(len(x)):

        for j in range(i+1, len(x)):

            if (x[i]+x[j] == y) and (x[i] != x[j]):

                return [x[i], x[j]]

    return []

Note: Input size n given by len(x)

1 variable (i); used over all iterations

– 1 variable (j); over all iterations

• no new variables

• no new variables

no new variables

2 variables overall, therefore O(1)

O(1) memory efficiency



2426th October 2021CO2412

Memory efficiency evaluation

def natmatch_iter(x, y):

    for i in range(len(x)):

        for j in range(i+1, len(x)):

            if (x[i]+x[j] == y) and (x[i] != x[j]):

                return [x[i], x[j]]

    return []

Note: Input size n given by len(x)

1 variable (i); used over all iterations

– 1 variable (j); over all iterations

• no new variables

• no new variables

no new variables

2 variables overall, therefore O(1)

O(1) memory efficiency

If we include memory require-
ments for storing the input, this 
gives n + 3, therefore O(n). It is 
common not to include the input, 
since it existed before; it does not 
need any additional memory.
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Landau notation: Examples

1. Eliminate all except the leading contribution, i.e., the one that do-
minates the measure for large values of n; the one that grows fastest:

2. Eliminate constant coefficients; replace them by a factor 1.

Efficiency measure as a function of n

24n2 + 4n + 600

7n1/2 + 3

(n + 1)(n + 2)

3(n1/2 + 5 log n)·n

Landau notation for the measure

O(n2)

n1/ 2
=√n
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Landau notation: Examples

1. Eliminate all except the leading contribution, i.e., the one that do-
minates the measure for large values of n; the one that grows fastest:

2. Eliminate constant coefficients; replace them by a factor 1.

Efficiency measure as a function of n

24n2 + 4n + 600

7n1/2 + 3

(n + 1)(n + 2)

3(n1/2 + 5 log n)·n

Landau notation for the measure

O(n2)

O(n1/2)
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Landau notation: Examples

1. Eliminate all except the leading contribution, i.e., the one that do-
minates the measure for large values of n; the one that grows fastest:

2. Eliminate constant coefficients; replace them by a factor 1.

Efficiency measure as a function of n

24n2 + 4n + 600

7n1/2 + 3

(n + 1)(n + 2) = n2 + 3n + 2

3(n1/2 + 5 log n)·n

Landau notation for the measure

O(n2)

O(n1/2)

O(n) · O(n) = O(n2)
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Remark on logarithms

In general, the logarithm is the inverse operation to exponentiation; both 
require a base. However, for “log x,” a base is often assumed from context.

y  =  bx   ⇔   x  = logb y

Convention in engineering and natural sciences

If no base is given, log n means log10 n, i.e., the decimal or decadic logarithm.

log10 1 = 0,  log10 10 = 1,  log10 100 = 2,  log10 1000 = 3, …
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Remark on logarithms

In general, the logarithm is the inverse operation to exponentiation; both 
require a base. However, for “log x,” a base is often assumed from context.

y  =  bx   ⇔   x  = logb y

Convention in engineering and natural sciences

If no base is given, log n means log10 n, i.e., the decimal or decadic logarithm.

log10 1 = 0,  log10 10 = 1,  log10 100 = 2,  log10 1000 = 3, …

Convention in mathematics

If no base is given, log n means ln n, the natural logarithm (base e = 2.71828…).

ln 1 = 0,  ln e = 1,  ln e2 = 2,  ln e3 = 3, … y  =  ex   ⇔   y  = exp( x )   ⇔   x  = ln y
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Remark on logarithms

In general, the logarithm is the inverse operation to exponentiation; both 
require a base. 

logp  n

logq  n
  =   logp  q   =   const.

Convention in engineering and natural sciences

If no base is given, log n means log10 n, i.e., the decimal or decadic logarithm.

log10 1 = 0,  log10 10 = 1,  log10 100 = 2,  log10 1000 = 3, …

Convention in theoretical computer science

If no base is given, log n means log2 n, i.e., the binary logarithm.

log2 1 = 0,  log2 2 = 1,  log2 4 = 2,  log2 256 = 8,  log21024 = 10, log2 65536 = 16, …
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Landau notation: Examples

1. Eliminate all except the leading contribution, i.e., the one that do-
minates the measure for large values of n; the one that grows fastest:

2. Eliminate constant coefficients; replace them by a factor 1.

Efficiency measure as a function of n

3(n1/2 + 5 log n)·n

Landau notation for the measure

O(n1/2) · O(n) = O(n1/2 · n1) = O(n3/2)

... or simply O (n√n)

n = 1 4 16 64 256 1024 4096  …

log n = 0 2 4 6 8 10 12

n1/2 = 1 2 4 8 16 32 64
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Time efficiency classification: Example

Specification: The function has two arguments, a list x containing n = len(x) 
integer numbers, where multiple elements are allowed to have the same value, 
and a single-digit integer 0 ≤ y ≤ 9. The function determines three numbers:

– q1, the number of elements of x with y as their final digit.
If the same number occurs twice in the list, it also counts twice.
In other words, q1 is the number of indices i such that “x[i] % 10 == y”.

For x = [7, 9, 4, 17, 7, 3] and y = 7, the value of q1 would be 3.

This corresponds to the three indices 0, 3, and 4.
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Time efficiency classification: Example

Specification: The function has two arguments, a list x containing n = len(x) 
integer numbers, where multiple elements are allowed to have the same value, 
and a single-digit integer 0 ≤ y ≤ 9. The function determines three numbers:

– q1, the number of elements of x with y as their final digit.
If the same number occurs twice in the list, it also counts twice.
In other words, q1 is the number of indices i such that “x[i] % 10 == y”.

– q2, the number of combinations of two indices i and j, with i ≠ j, such that 
the product x[i] · x[j] has the remainder y upon division by 10. In other 
words, q2 is the number of ordered pairs (i, j) with “x[i]*x[j] % 10 == y”.
As a consequence, each pair counts twice, once as (i, j), once as (j, i).

For x = [7, 9, 4, 17, 7, 3] and y = 7, the value of q2 would be 2.

This corresponds to the two ordered pairs of indices (1, 5) and (5, 1).
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Time efficiency classification: Example

Specification: The function has two arguments, a list x containing n = len(x) 
integer numbers, where multiple elements are allowed to have the same value, 
and a single-digit integer 0 ≤ y ≤ 9. The function determines three numbers:

– q1, the number of elements of x with y as their final digit.
If the same number occurs twice in the list, it also counts twice.
In other words, q1 is the number of indices i such that “x[i] % 10 == y”.

– q2, the number of combinations of two indices i and j, with i ≠ j, such that 
the product x[i] · x[j] has the remainder y upon division by 10. In other 
words, q2 is the number of ordered pairs (i, j) with “x[i]*x[j] % 10 == y”.
As a consequence, each pair counts twice, once as (i, j), once as (j, i).

– q3, the number of combinations of three indices i, j, k such that the pro-
duct x[i] · x[j] · x[k] has y as its final digit; x[i], x[j], x[k] may be the same, 
but i, j, k must be three different indices. Every such triple occurs in six
permutations: (i, j, k), (i, k, j), (j, i, k), (j, k, i), (k, i, j), (k, j, I) – they count as six.

The function returns a list containing the three values [q1, q2, q3].
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Time efficiency classification: Example

Specification: The 
function has two 
arguments, a list x 
containing n = len(x) 
integer numbers, 
where multiple 
elements are 
allowed to have the 
same value, and a 
single-digit integer 
0 ≤ y ≤ 9. The 
function returns the 
list [q1, q2, q3].

Problem size de-
fined as n = len(x).

def mod10_count_naive(x, y):
    q1, q2, q3 = 0, 0, 0
    for i in range(len(x)):
        if x[i] % 10 == y:
            q1 += 1
        for j in range(len(x)):
            if i == j:
                continue
            elif (x[i]*x[j]) % 10 == y:
                q2 += 1
            for k in range(len(x)):
                if i == k or j == k:
                    continue
                elif (x[i]*x[j]*x[k]) % 10 == y:
                    q3 += 1
    return [q1, q2, q3]
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Time efficiency classification: Example

def mod10_count_naive(x, y):
    q1, q2, q3 = 0, 0, 0
    for i in range(len(x)):
        if x[i] % 10 == y:
            q1 += 1
        for j in range(len(x)):
            if i == j:
                continue
            elif (x[i]*x[j]) % 10 == y:
                q2 += 1
            for k in range(len(x)):
                if i == k or j == k:
                    continue
                elif (x[i]*x[j]*x[k]) % 10 == y:
                    q3 += 1
    return [q1, q2, q3]

done once

done n3 times

done n2 times

done n times

done once

Specification: The 
function has two 
arguments, a list x 
containing n = len(x) 
integer numbers, 
where multiple 
elements are 
allowed to have the 
same value, and a 
single-digit integer 
0 ≤ y ≤ 9. The 
function returns the 
list [q1, q2, q3].

Problem size de-
fined as n = len(x).



3726th October 2021CO2412

Time efficiency classification: Example

def mod10_count_naive(x, y):
    q1, q2, q3 = 0, 0, 0
    for i in range(len(x)):
        if x[i] % 10 == y:
            q1 += 1
        for j in range(len(x)):
            if i == j:
                continue
            elif (x[i]*x[j]) % 10 == y:
                q2 += 1
            for k in range(len(x)):
                if i == k or j == k:
                    continue
                elif (x[i]*x[j]*x[k]) % 10 == y:
                    q3 += 1
    return [q1, q2, q3]

done once

done n3 times

done n2 times

done n times

done once

Specification: The 
function has two 
arguments, a list x 
containing n = len(x) 
integer numbers, 
where multiple 
elements are 
allowed to have the 
same value, and a 
single-digit integer 
0 ≤ y ≤ 9. The 
function returns the 
list [q1, q2, q3].

Problem size de-
fined as n = len(x).

Eliminate all except the leading 
contribution, i.e., the one that 

dominates the measure for large values 
of n; the one that grows fastest.

O(n3) + O(n2) + O(n) + O(1)  =  O(n3)
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Average performance of q1, q2, q3 computations

time requirements 
are cubic in n

notation: O(n3)

“ order of n3 ”

Challenge: Make it
better than O(n3)
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Terminology and
building a glossary
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