
Where opportunity creates success

CO2412
Computational Thinking

Formal verification #2
Algorithmic efficiency #2
Terminology and building a glossary

26th October 2021CO2412

Formal verification #2

326th October 2021CO2412

Preconditions and postconditions

def grtfrac(x, y):
 if (x - x//1) > (y - y//1):
 return x
 else:
 return y

Note

Consider the statement “return x” from transition S1 → S3:

– The execution state S1 is the precondition of S1 → S3.

– The execution state S3 is the postcondition of S1 → S3.

if (x - x//1) > (y - y//1):

return x return y

initial state S0

true false
S1 S2

final state S3
final state S4

transitions S0 → S1, S2

transition S2 → S4transition S1 → S3

426th October 2021CO2412

Initial and final conditions matching the specification

def grtfrac(x, y):
 if (x - x//1) > (y - y//1):
 return x
 else:
 return y

if (x - x//1) > (y - y//1):

return x return y

initial state S0

true false
S1 S2

final state S3
final state S4

transitions S0 → S1, S2

transition S2 → S4transition S1 → S3

S0: x and y are floating-point numbers (by specification).
S1: x, y as above; the fractional part of x is greater than that of y.
S2: x, y as above; the fractional part of y is greater than that of x, or equal.
S3: The fractional part of x is the greater one, and x was returned.
S4: The fractional part of y is greater (or they are equal); y was returned.

526th October 2021CO2412

Loop invariants

for i in range(len(x)):

for j in range(i+1, len(x)):

if (x[i]+x[j] == y) and (x[i] != x[j]):

return [x[i], x[j]]

return []

initial state S0

end

next
S4

final state S3

end

S2

next
S1

S5

true
S6

final state S7

false

S8

S0: x and y given as specified.

S1, invariant: 0 ≤ i < len(x).

S4, invariant: 0 ≤ i < len(x),
i < j < len(x), all indices smaller
than i did not yield a match,
and x[i] does not match with
any x[k] for indices i < k < j.

S8, invariant: As above, and
x[i] does not match with any
x[k] for indices i < k ≤ j.

S5, invariant: As above, and we
now know that x[i] does not yield
a match with any other element.
(And neither did any smaller i.)

626th October 2021CO2412

Initial and final conditions

S0: x and y given as specified.

S1: 0 ≤ i < len(x).

S5: No combination of any x[i]
that was tried so far, with any
x[j] from the list where i < j,
produces a valid match.

S6: x[i] and x[j] are a match.

S7: Match found and returned.

S2: End of list, all pairs of ele-
ments were tried, none matched.

S3: No match; [] was returned.

for i in range(len(x)):

for j in range(i+1, len(x)):

if (x[i]+x[j] == y) and (x[i] != x[j]):

return [x[i], x[j]]

return []

initial state S0

end

next
S4

final state S3

end

S2

next
S1

S5

true
S6

final state S7

false

S8

726th October 2021CO2412

Application to debugging

Breakpoints at:

– S0, output x and y

– S3, output status
message

– S7, output i, j, x[i], x[j],
and their sum

– S8, output i, j, x[i], x[j],
and their sum

for i in range(len(x)):

for j in range(i+1, len(x)):

if (x[i]+x[j] == y) and (x[i] != x[j]):

return [x[i], x[j]]

return []

initial state S0

end

next
S4

final state S3

end

S2

next
S1

S5

true
S6

final state S7

false

S8

26th October 2021CO2412

Algorithmic
efficiency #2

926th October 2021CO2412

Average performance of Fibonacci codes

recursive code
(with store-and-recall)

iterative code

time requirements
are linear in n

notation: O(n)

“order of n”

1026th October 2021CO2412

Average performance of number-matching codes

recursive code

iterative code

time requirements
are quadratic in n

notation: O(n2)

“ order of n2 ”

1126th October 2021CO2412

Algorithm efficiency as a function of problem size

Usually we are not interested in the efficiency of an algorithm for a single input
value, but in understanding how the efficiency behaves as a function of a charac-
teristic quantity, the problem size n, that describes the magnitude of the task.

We distinguish between:

– Time efficiency measure(s), describing CPU time in an abstract way; one
possible measure for it is the number of code/pseudocode instructions.

– Space or memory efficiency measure(s), describing the memory in an
abstract way, e.g., by the number of elementary values stored in varia-
bles, data structures, or files; this usually excludes the initial input.

– Worst-case efficiency, which for any given problem size n corresponds
to the special case of size n with the greatest computing time/memory.

– Average-case efficiency, over all (or many representative) cases of size n.

There is also “best-case efficiency,” but usually not as an evaluation criterion.

1226th October 2021CO2412

Algorithm efficiency as a function of problem size

Usually we are not interested in the efficiency of an algorithm for a single input
value, but in understanding how the efficiency behaves as a function of a charac-
teristic quantity, the problem size n, that describes the magnitude of the task.

We distinguish between:

– Time efficiency measure(s), describing CPU time in an abstract way; one
possible measure for it is the number of code/pseudocode instructions.

– Space or memory efficiency measure(s), describing the memory in an
abstract way, e.g., by the number of elementary values stored in varia-
bles, data structures, or files; this usually excludes the initial input.

– Worst-case efficiency, which for any given problem size n corresponds
to the special case of size n with the greatest computing time/memory.

– Average-case efficiency, over all (or many representative) cases of size n.

There is also “best-case efficiency,” but usually not as an evaluation criterion.

Remark

There is no universal rule for how the problem size n should be
defined. It is up to the person analysing an algorithm to define
it appropriately. It should describe how complicated the task is.

Common choices are the length of the input (e.g., if given as an
array or string), the value passed as of one of the arguments of
a function, or the number of elements stored in a data structure.

1326th October 2021CO2412

Asymptotic efficiency

Often we are most interested in the qualitative scaling behaviour of algorithms.

For this purpose, Landau notation is used,1 also known as “big O notation.” For
any given efficiency measure, this is obtained as follows:

– Eliminate all except the leading contribution, i.e., the one that dominates
the measure for large values of n. It is the one that grows fastest:

– From 3n3 + 12n + 17, we retain only 3n3.
– From 16·2n + 5n3, we retain only 16·2n.
– If you are unsure, insert n = 1000 and see which term is greatest.

– Eliminate constant coefficients; 3n3 becomes O(n3), 16·2n becomes O(2n).

1Named for Edmund Landau (1877 – 1938) who developed this notation for infinitesimal calculus.

1426th October 2021CO2412

Asymptotic efficiency

Often we are most interested in the qualitative scaling behaviour of algorithms.

For this purpose, Landau notation is used,1 also known as “big O notation.” For
any given efficiency measure, this is obtained as follows:

– Eliminate all except the leading contribution, i.e., the one that dominates
the measure for large values of n. It is the one that grows fastest:

– From 3n3 + 12n + 17, we retain only 3n3.
– From 16·2n + 5n3, we retain only 16·2n.
– If you are unsure, insert n = 1000 and see which term is greatest.

– Eliminate constant coefficients; 3n3 becomes O(n3), 16·2n becomes O(2n).

If an algorithm includes 3n3 + 12n + 17 instructions in the worst case, we can
say, it is in time efficiency class O(n3), or simply, it has time efficiency O(n3).

1Named for Edmund Landau (1877 – 1938) who developed this notation for infinitesimal calculus.

1526th October 2021CO2412

Asymptotic efficiency

Often we are most interested in the qualitative scaling behaviour of algorithms.

For this purpose, Landau notation is used,1 also known as “big O notation.” For
any given efficiency measure, this is obtained as follows:

– Eliminate all except the leading contribution, i.e., the one that dominates
the measure for large values of n. It is the one that grows fastest:

– From 3n3 + 12n + 17, we retain only 3n3.
– From 16·2n + 5n3, we retain only 16·2n.
– If you are unsure, insert n = 1000 and see which term is greatest.

– Eliminate any leading factors; 3n3 becomes O(n3), 16·2n becomes O(2n).

If an algorithm includes 3n3 + 12n + 17 instructions in the worst case, we can
say, it is in time efficiency class O(n3), or simply, it has time efficiency O(n3).

1Named for Edmund Landau (1877 – 1938) who developed this notation for infinitesimal calculus.

Observation

Landau notation describes the “shape of the curve” for great n.

The asymptotic efficiency class of an algorithm is the same as the
asymptotic performance class of any reasonable implementation.

For most algorithms, the distinction between the average and the
worst case disappears if considered in terms of Landau notation.

1626th October 2021CO2412

Asymptotic efficiency

Often we are most interested in the qualitative scaling behaviour of algorithms.

For this purpose, Landau notation is used,1 also known as “big O notation.” For
any given efficiency or requirements measure, this is obtained as follows:

– Eliminate all except the leading contribution, i.e., the one that dominates
the measure for large values of n. It is the one that grows fastest:

– From 3n3 + 12n + 17, we retain only 3n3.
– From 16·2n + 5n3, we retain only 16·2n.
– If you are unsure, insert n = 1000 and see which term is greatest.

– Eliminate any leading factors; 3n3 becomes O(n3), 16·2n becomes O(2n).

If an algorithm includes 3n3 + 12n + 17 instructions in the worst case, we can
say, it is in time efficiency class O(n3), or simply, it has time efficiency O(n3).

1Named for Edmund Landau (1877 – 1938) who developed this notation for infinitesimal calculus.

Examples

The Fibonacci algorithms have O(n) time and space efficiency.

The number matching algorithms have O(n2) time efficiency; the
iterative one has O(1) space efficiency, the recursive one O(n).

1726th October 2021CO2412

Asymptotic efficiency

Often we are most interested in the qualitative scaling behaviour of algorithms.

For this purpose, Landau notation is used,1 also known as “big O notation.” For
any given efficiency or requirements measure, this is obtained as follows:

– Eliminate all except the leading contribution, i.e., the one that dominates
the measure for large values of n. It is the one that grows fastest:

– From 3n3 + 12n + 17, we retain only 3n3.
– From 16·2n + 5n3, we retain only 16·2n.
– If you are unsure, insert n = 1000 and see which term is greatest.

– Eliminate any leading factors; 3n3 becomes O(n3), 16·2n becomes O(2n).

If an algorithm includes 3n3 + 12n + 17 instructions in the worst case, we can
say, it is in time efficiency class O(n3), or simply, it has time efficiency O(n3).

1Named for Edmund Landau (1877 – 1938) who developed this notation for infinitesimal calculus.

Examples

The Fibonacci algorithms have O(n) time and space efficiency.

The number matching algorithms have O(n2) time efficiency; the
iterative one has O(1) space efficiency,1 the recursive one O(n).

Note

1Unless you count the input size, which would contribute in O(n).
 This is why input size is usually excluded from space efficiency.

1826th October 2021CO2412

Asymptotic efficiency

Often we are most interested in the qualitative scaling behaviour of algorithms.

For this purpose, Landau notation is used,1 also known as “big O notation.” For
any given efficiency or requirements measure, this is obtained as follows:

– Eliminate all except the leading contribution, i.e., the one that dominates
the measure for large values of n. It is the one that grows fastest:

– From 3n3 + 12n + 17, we retain only 3n3.
– From 16·2n + 5n3, we retain only 16·2n.
– If you are unsure, insert n = 1000 and see which term is greatest.

– Eliminate any leading factors; 3n3 becomes O(n3), 16·2n becomes O(2n).

If an algorithm includes 3n3 + 12n + 17 instructions in the worst case, we can
say, it is in time efficiency class O(n3), or simply, it has time efficiency O(n3).

1Named for Edmund Landau (1877 – 1938) who developed this notation for infinitesimal calculus.

Examples

The Fibonacci algorithms have O(n) time and space efficiency.

The number matching algorithms have O(n2) time efficiency; the
iterative one has O(1) space efficiency,1 the recursive one O(n).

Is this the best possible asymptotic efficiency, or can it be done in
a better way? This is a topic both for algorithm design (find better
solutions) and complexity theory (prove general lower bounds).

Note

1Unless you count the input size, which would contribute in O(n).
 This is why input size is usually excluded from space efficiency.

1926th October 2021CO2412

Why does the Fibonacci algorithm take linear time?

def fibonacci_iter(n):

 fibo = [0, 1]

 for k in range(2, n+1):

 fibo.append(fibo[k-1] + fibo[k-2])

 return fibo[n]

2 instructions

loop executed n – 1 times:
– 1 instruction for the loop index
– 4 instructions

1 instruction

5(n – 1) + 3 = 5n – 2 instructions

O(n) time efficiency

2026th October 2021CO2412

Why does the Fibonacci algorithm take linear time?

def fibonacci_iter(n):

 fibo = [0, 1]

 for k in range(2, n+1):

 fibo.append(fibo[k-1] + fibo[k-2])

 return fibo[n]

2 instructions

loop executed n – 1 times:
– 1 instruction for the loop index
– 4 instructions

1 instruction

5(n – 1) + 3 = 5n – 2 instructions

O(n) time efficiency

The number of “instructions” assumed above is rather arbitrary. Asymptotic
efficiency analysis simplifies this. In particular, any constants become “O(1)”.

2126th October 2021CO2412

Why does the Fibonacci algorithm take linear time?

def fibonacci_iter(n):

 fibo = [0, 1]

 for k in range(2, n+1):

 fibo.append(fibo[k-1] + fibo[k-2])

 return fibo[n]

O(1) instructions

loop executed O(n) times:

– O(1) instructions

O(1) instructions

O(n · 1) + O(1) = O(n) instructions

O(n) time efficiency

The number of “instructions” assumed above is rather arbitrary. Asymptotic
efficiency analysis simplifies this. In particular, any constants become “O(1)”.

2226th October 2021CO2412

Why does our matching code take quadratic time?

def natmatch_iter(x, y):

 for i in range(len(x)):

 for j in range(i+1, len(x)):

 if (x[i]+x[j] == y) and (x[i] != x[j]):

 return [x[i], x[j]]

 return []

Note: Input size n given by len(x)

loop executed O(n) times:

– loop executed O(n) times:

• O(1) instructions

• O(1) optional instructions

O(1) optional instructions

O(n) · O(n·1) + O(1) = O(n2) instructions

O(n2) time efficiency

2326th October 2021CO2412

Memory efficiency evaluation

def natmatch_iter(x, y):

 for i in range(len(x)):

 for j in range(i+1, len(x)):

 if (x[i]+x[j] == y) and (x[i] != x[j]):

 return [x[i], x[j]]

 return []

Note: Input size n given by len(x)

1 variable (i); used over all iterations

– 1 variable (j); over all iterations

• no new variables

• no new variables

no new variables

2 variables overall, therefore O(1)

O(1) memory efficiency

2426th October 2021CO2412

Memory efficiency evaluation

def natmatch_iter(x, y):

 for i in range(len(x)):

 for j in range(i+1, len(x)):

 if (x[i]+x[j] == y) and (x[i] != x[j]):

 return [x[i], x[j]]

 return []

Note: Input size n given by len(x)

1 variable (i); used over all iterations

– 1 variable (j); over all iterations

• no new variables

• no new variables

no new variables

2 variables overall, therefore O(1)

O(1) memory efficiency

If we include memory require-
ments for storing the input, this
gives n + 3, therefore O(n). It is
common not to include the input,
since it existed before; it does not
need any additional memory.

2526th October 2021CO2412

Landau notation: Examples

1. Eliminate all except the leading contribution, i.e., the one that do-
minates the measure for large values of n; the one that grows fastest:

2. Eliminate constant coefficients; replace them by a factor 1.

Efficiency measure as a function of n

24n2 + 4n + 600

7n1/2 + 3

(n + 1)(n + 2)

3(n1/2 + 5 log n)·n

Landau notation for the measure

O(n2)

n1/ 2
=√n

2626th October 2021CO2412

Landau notation: Examples

1. Eliminate all except the leading contribution, i.e., the one that do-
minates the measure for large values of n; the one that grows fastest:

2. Eliminate constant coefficients; replace them by a factor 1.

Efficiency measure as a function of n

24n2 + 4n + 600

7n1/2 + 3

(n + 1)(n + 2)

3(n1/2 + 5 log n)·n

Landau notation for the measure

O(n2)

O(n1/2)

2726th October 2021CO2412

Landau notation: Examples

1. Eliminate all except the leading contribution, i.e., the one that do-
minates the measure for large values of n; the one that grows fastest:

2. Eliminate constant coefficients; replace them by a factor 1.

Efficiency measure as a function of n

24n2 + 4n + 600

7n1/2 + 3

(n + 1)(n + 2) = n2 + 3n + 2

3(n1/2 + 5 log n)·n

Landau notation for the measure

O(n2)

O(n1/2)

O(n) · O(n) = O(n2)

2826th October 2021CO2412

Remark on logarithms

In general, the logarithm is the inverse operation to exponentiation; both
require a base. However, for “log x,” a base is often assumed from context.

y = bx ⇔ x = logb y

Convention in engineering and natural sciences

If no base is given, log n means log10 n, i.e., the decimal or decadic logarithm.

log10 1 = 0, log10 10 = 1, log10 100 = 2, log10 1000 = 3, …

2926th October 2021CO2412

Remark on logarithms

In general, the logarithm is the inverse operation to exponentiation; both
require a base. However, for “log x,” a base is often assumed from context.

y = bx ⇔ x = logb y

Convention in engineering and natural sciences

If no base is given, log n means log10 n, i.e., the decimal or decadic logarithm.

log10 1 = 0, log10 10 = 1, log10 100 = 2, log10 1000 = 3, …

Convention in mathematics

If no base is given, log n means ln n, the natural logarithm (base e = 2.71828…).

ln 1 = 0, ln e = 1, ln e2 = 2, ln e3 = 3, … y = ex ⇔ y = exp(x) ⇔ x = ln y

3026th October 2021CO2412

Remark on logarithms

In general, the logarithm is the inverse operation to exponentiation; both
require a base.

logp n

logq n
 = logp q = const.

Convention in engineering and natural sciences

If no base is given, log n means log10 n, i.e., the decimal or decadic logarithm.

log10 1 = 0, log10 10 = 1, log10 100 = 2, log10 1000 = 3, …

Convention in theoretical computer science

If no base is given, log n means log2 n, i.e., the binary logarithm.

log2 1 = 0, log2 2 = 1, log2 4 = 2, log2 256 = 8, log21024 = 10, log2 65536 = 16, …

3126th October 2021CO2412

Landau notation: Examples

1. Eliminate all except the leading contribution, i.e., the one that do-
minates the measure for large values of n; the one that grows fastest:

2. Eliminate constant coefficients; replace them by a factor 1.

Efficiency measure as a function of n

3(n1/2 + 5 log n)·n

Landau notation for the measure

O(n1/2) · O(n) = O(n1/2 · n1) = O(n3/2)

... or simply O (n√n)

n = 1 4 16 64 256 1024 4096 …

log n = 0 2 4 6 8 10 12

n1/2 = 1 2 4 8 16 32 64

3226th October 2021CO2412

Time efficiency classification: Example

Specification: The function has two arguments, a list x containing n = len(x)
integer numbers, where multiple elements are allowed to have the same value,
and a single-digit integer 0 ≤ y ≤ 9. The function determines three numbers:

– q1, the number of elements of x with y as their final digit.
If the same number occurs twice in the list, it also counts twice.
In other words, q1 is the number of indices i such that “x[i] % 10 == y”.

For x = [7, 9, 4, 17, 7, 3] and y = 7, the value of q1 would be 3.

This corresponds to the three indices 0, 3, and 4.

3326th October 2021CO2412

Time efficiency classification: Example

Specification: The function has two arguments, a list x containing n = len(x)
integer numbers, where multiple elements are allowed to have the same value,
and a single-digit integer 0 ≤ y ≤ 9. The function determines three numbers:

– q1, the number of elements of x with y as their final digit.
If the same number occurs twice in the list, it also counts twice.
In other words, q1 is the number of indices i such that “x[i] % 10 == y”.

– q2, the number of combinations of two indices i and j, with i ≠ j, such that
the product x[i] · x[j] has the remainder y upon division by 10. In other
words, q2 is the number of ordered pairs (i, j) with “x[i]*x[j] % 10 == y”.
As a consequence, each pair counts twice, once as (i, j), once as (j, i).

For x = [7, 9, 4, 17, 7, 3] and y = 7, the value of q2 would be 2.

This corresponds to the two ordered pairs of indices (1, 5) and (5, 1).

3426th October 2021CO2412

Time efficiency classification: Example

Specification: The function has two arguments, a list x containing n = len(x)
integer numbers, where multiple elements are allowed to have the same value,
and a single-digit integer 0 ≤ y ≤ 9. The function determines three numbers:

– q1, the number of elements of x with y as their final digit.
If the same number occurs twice in the list, it also counts twice.
In other words, q1 is the number of indices i such that “x[i] % 10 == y”.

– q2, the number of combinations of two indices i and j, with i ≠ j, such that
the product x[i] · x[j] has the remainder y upon division by 10. In other
words, q2 is the number of ordered pairs (i, j) with “x[i]*x[j] % 10 == y”.
As a consequence, each pair counts twice, once as (i, j), once as (j, i).

– q3, the number of combinations of three indices i, j, k such that the pro-
duct x[i] · x[j] · x[k] has y as its final digit; x[i], x[j], x[k] may be the same,
but i, j, k must be three different indices. Every such triple occurs in six
permutations: (i, j, k), (i, k, j), (j, i, k), (j, k, i), (k, i, j), (k, j, I) – they count as six.

The function returns a list containing the three values [q1, q2, q3].

3526th October 2021CO2412

Time efficiency classification: Example

Specification: The
function has two
arguments, a list x
containing n = len(x)
integer numbers,
where multiple
elements are
allowed to have the
same value, and a
single-digit integer
0 ≤ y ≤ 9. The
function returns the
list [q1, q2, q3].

Problem size de-
fined as n = len(x).

def mod10_count_naive(x, y):
 q1, q2, q3 = 0, 0, 0
 for i in range(len(x)):
 if x[i] % 10 == y:
 q1 += 1
 for j in range(len(x)):
 if i == j:
 continue
 elif (x[i]*x[j]) % 10 == y:
 q2 += 1
 for k in range(len(x)):
 if i == k or j == k:
 continue
 elif (x[i]*x[j]*x[k]) % 10 == y:
 q3 += 1
 return [q1, q2, q3]

3626th October 2021CO2412

Time efficiency classification: Example

def mod10_count_naive(x, y):
 q1, q2, q3 = 0, 0, 0
 for i in range(len(x)):
 if x[i] % 10 == y:
 q1 += 1
 for j in range(len(x)):
 if i == j:
 continue
 elif (x[i]*x[j]) % 10 == y:
 q2 += 1
 for k in range(len(x)):
 if i == k or j == k:
 continue
 elif (x[i]*x[j]*x[k]) % 10 == y:
 q3 += 1
 return [q1, q2, q3]

done once

done n3 times

done n2 times

done n times

done once

Specification: The
function has two
arguments, a list x
containing n = len(x)
integer numbers,
where multiple
elements are
allowed to have the
same value, and a
single-digit integer
0 ≤ y ≤ 9. The
function returns the
list [q1, q2, q3].

Problem size de-
fined as n = len(x).

3726th October 2021CO2412

Time efficiency classification: Example

def mod10_count_naive(x, y):
 q1, q2, q3 = 0, 0, 0
 for i in range(len(x)):
 if x[i] % 10 == y:
 q1 += 1
 for j in range(len(x)):
 if i == j:
 continue
 elif (x[i]*x[j]) % 10 == y:
 q2 += 1
 for k in range(len(x)):
 if i == k or j == k:
 continue
 elif (x[i]*x[j]*x[k]) % 10 == y:
 q3 += 1
 return [q1, q2, q3]

done once

done n3 times

done n2 times

done n times

done once

Specification: The
function has two
arguments, a list x
containing n = len(x)
integer numbers,
where multiple
elements are
allowed to have the
same value, and a
single-digit integer
0 ≤ y ≤ 9. The
function returns the
list [q1, q2, q3].

Problem size de-
fined as n = len(x).

Eliminate all except the leading
contribution, i.e., the one that

dominates the measure for large values
of n; the one that grows fastest.

O(n3) + O(n2) + O(n) + O(1) = O(n3)

3826th October 2021CO2412

Average performance of q1, q2, q3 computations

time requirements
are cubic in n

notation: O(n3)

“ order of n3 ”

Challenge: Make it
better than O(n3)

26th October 2021CO2412

Terminology and
building a glossary

Where opportunity creates success

CO2412
Computational Thinking

Formal verification #2
Algorithmic efficiency #2
Terminology and building a glossary

