2 | University of

£y Central Lancashire
)

UCLan

CO2412
Computational Thinking

Formal verification #2
Algorithmic efficiency #2
Terminology and building a glossary

Where opportunity creates success

N/
University of
€™ Central Lancashire

@’ UCLan

Formal verification #2

CO2412 26" October 2021

N2

e
Preconditions and postconditions

initial state S
def grtfrac(x, y):

if (x -x//1)>(y-y//1):
return x

if (x-x//1) > (y-y//1): | transitions S, = S., S,

Al true| false
? S, S,
returny
. return x return transition S, = S
transition S, = S, y 2 4
final state S, @ @ final state S,
Note

Consider the statement “return x” from transition S, = S.:
— The execution state S, is the precondition of S, = S._.
— The execution state S, is the postcondition of S, = S._.

C0O2412 26" October 2021 3

N2

P University of
@ Central Lancashire
UCLan

Initial and final conditions matching the specification

initial state S
def grtfrac(x, y):

if (x - x//1) > (y - y//1): if (x-x//1) > (y-y//1): | transitions S, = S., S,
return x

Al true : false .
return y 1 2

return x returny | transitionS, =S,

transition S1 — 53

final state S, @ @ final state S,

: x and y are floating-point numbers (by specification).

: X, y as above; the fractional part of x is greater than that of y.

. X, y as above; the fractional part of y is greater than that of x, or equal.
: The fractional part of x is the greater one, and x was returned.

: The fractional part of y is greater (or they are equal); y was returned.

C0O2412 26" October 2021 4

N2

P University of
@ Central Lancashire
UCLan

LOOp Invariants : initial state S,

. . . (e d
S,:xandy given as specified. o i reme bl end_ @ s,
S,,invariant: 0 < i < len(x). next

S. S,
S, invariant: 0 < i <len(x), end
i <j<len(x), all indices smaller —>| forjinrange(i+1, len(x)):
than i did not yield a match, S @ next y
and x[i] does not match with ’ S, return []
any x[k] for indices i < k <. false ¢
S_, invariant: As above, and if (x[i]+x[j] == y) and (x[i] != x{j]): ®

Y o / .

x[i] does not match with any true final state S,
x[k] for indices i < k < j. S¢

S.. invariant: As above, and we return [x[i], x[j]]

now know that x[i] does not yield

a match with any other element. ¢

(And neither did any smaller i.) @ final state S,

C0O2412 26" October 2021 5

Al
P University of
@ Central Lancashire

UCLan

Initial and final conditions Imitial state S,
S,: x and y given as specified. for i in range(len(x)) end ®s,
S.:0<i<len(x). next
S, S,
S.: No combination of any x[i] end
that was tried so far, with any —| forjin range(i+1, len(x)):
x[j] from the list where i <}, S, @ next Y
produces a valid match. S, return []
false ‘
S.: x[i] and x[j] are a match. if (x(i]+x]j] == y) and (x{i] 1= x{j]) b4
S_: Match found and returned. true* final state S,
S
S,: End of list, all pairs of ele-)
ments were tried, none matched. return [x[i], x[j]]
S.: No match; [] was returned. ¢

@® final state S,

C0O2412 26" October 2021 6

N2

P University of
@ Central Lancashire
UCLan

Application to debugging tmitial state S,

d
for i in range(len(x)): L‘ S,

Breakpoints at: next
S. S,
end

— S, output xandy

—| forjinrange(i+1, len(x)):
— S,, output status S, @ next Y
message folse S, return []
— S_, output i, j, x[i], x[j], if (x[i]4+x[j] == y) and (x[i] != x[j]): i
and their sum true* final state S,
S
_ S, output i, j, xlil, x[jl, 6

and their sum return [x[i], x[j]]

:

@® final state S,

C0O2412 26" October 2021 7

Al
University of

€™ Central Lancashire
@’ UCLan

Algorithmic
efficiency #2

CO2412 26" October 2021

N2

o
Average performance of Fibonacci codes

0.0014 1

time requirements
are linearinn

0.0012
recursive code

0.0010 . (with store-and-recall)
notation: O(n)

0.0008 -
"order of n”

0.0006 1

iterative code .

average runtime in seconds
o (]
o o
o o
o o
s e

0.0000

0 500 1000 1500 2000 2500
order no. in the Fibonacci sequence

C0O2412 26" October 2021 9

N2

P University of
@ Central Lancashire
UCLan

Average performance of number-matching codes

0.08 : .
time requirements
5 are quadraticinn
-
O
Q 0.06 notation: O(n?)
k=
E “order of n2”
S 0.04
=
3
| -
v
()]
© 0.02]
O
>
(G
0.00

0 200 400 600 800 1000 1200 1400
input list size

C0O2412 26" October 2021 10

N2

P University of
@ Central Lancashire
UCLan

Algorithm efficiency as a function of problem size

Usually we are not interested in the efficiency of an algorithm for a single input
value, but in understanding how the efficiency behaves as a function of a charac-
teristic quantity, the problem size n, that describes the magnitude of the task.

We distinguish between:

— Time efficiency measure(s), describing CPU time in an abstract way; one
possible measure for it is the number of code/pseudocode instructions.

— Space or memory efficiency measure(s), describing the memory in an
abstract way, e.g., by the number of elementary values stored in varia-
bles, data structures, or files; this usually excludes the initial input.

— Worst-case efficiency, which for any given problem size n corresponds
to the special case of size n with the greatest computing time/memory.
— Average-case efficiency, over all (or many representative) cases of size n.

There is also “best-case efficiency,” but usually not as an evaluation criterion.

C0O2412 26" October 2021 11

N2

P University of
@ Central Lancashire
UCLan

Algorithm efficiency as a function of problem size

Usually we are not interested in the efficiency of an algorithm for a single input
value, but in understanding how the efficiency behaves as a function of a charac-
teristic quantity, the problem size n, that describes the magnitude of the task.

We distinguish between:

Remark , one

ons.
There is no universal rule for how the problem size n should be [an
defined. It is up to the person analysing an algorithm to define |ia-

it appropriately. It should describe how complicated the task is.

Common choices are the length of the input (e.g., if given as an fids
array or string), the value passed as of one of the arguments of pry.
a function, or the number of elements stored in a data structure. |ize n.

There is also "best-case efficiency,” but usually not as an evaluation criterion.

C0O2412 26" October 2021 12

N2

gﬁg&?gsligr?iashire
Asymptotic efficiency

Often we are most interested in the qualitative scaling behaviour of algorithms.

For this purpose, Landau notation is used,' also known as “big O notation.” For
any given efficiency measure, this is obtained as follows:

— Eliminate all except the leading contribution, i.e., the one that dominates
the measure for large values of n. It is the one that grows fastest:
— From 3n3 + 12n + 17, we retain only 3n3.
— From 16:2" + 5n3, we retain only 16-2".
— If you are unsure, insert n = 1000 and see which term is greatest.

— Eliminate constant coefficients; 3n® becomes O(n3), 16-:2" becomes O(2").

"Named for Edmund Landau (1877 - 1938) who developed this notation for infinitesimal calculus.

C0O2412 26" October 2021 13

N2

P University of
@ Central Lancashire
UCLan

Asymptotic efficiency

Often we are most interested in the qualitative scaling behaviour of algorithms.

For this purpose, Landau notation is used,' also known as “big O notation.” For
any given efficiency measure, this is obtained as follows:

— Eliminate all except the leading contribution, i.e., the one that dominates
the measure for large values of n. It is the one that grows fastest:

— From 3n3 + 12n + 17, we retain only 3n3.
— From 16:2" + 5n3, we retain only 16-2".
— If you are unsure, insert n = 1000 and see which term is greatest.

— Eliminate constant coefficients; 3n3 becomes O(n3), 16-:2" becomes O(2").

If an algorithm includes 3n® + 12n + 17 instructions in the worst case, we can
say, itis in time efficiency class O(n?), or simply, it has time efficiency O(n?3).

"Named for Edmund Landau (1877 - 1938) who developed this notation for infinitesimal calculus.

C0O2412 26" October 2021 14

University of
S&::ral Lancashire
Asymptotic efficiency

Often we are most interested in the qualitative scaling behaviour of algorithms.

For this purpose, Landau notation is used,’ also known as “big O notation.” For
any given efficiency measure, this is obtained as follows:

. \inates
Observation

Landau notation describes the “shape of the curve” for great n.

The asymptotic efficiency class of an algorithm is the same as the [atest.
asymptotic performance class of any reasonable implementation.
D(27).
For most algorithms, the distinction between the average and the
If a|l worst case disappears if considered in terms of Landau notation. |an

say, Itis i tme efmciency Class ULr™), O SIMply, Tt Nas turme ericiency UILT

"Named for Edmund Landau (1877 - 1938) who developed this notation for infinitesimal calculus.

C0O2412 26" October 2021 15

N2

oy
Asymptotic efficiency

Oftepae are mast interested in the aualitative scalina behaviour of alaarithms.

Examples
Fort For
any ¢ The Fibonacci algorithms have O(n) time and space efficiency.

| The number matching algorithms have O(n?) time efficiency; the
iterative one has O(1) space efficiency, the recursive one O(n).

nates

— From 3n®+ 12n + 17, we retain only 3n°.
— From 16-2" + 5n°, we retain only 16-2".
— If you are unsure, insert n = 1000 and see which term is greatest.

— Eliminate any leading factors; 3n® becomes O(n?3), 16-:2" becomes O(2").

If an algorithm includes 3n3 + 12n + 17 instructions in the worst case, we can
say, itis in time efficiency class O(n?), or simply, it has time efficiency O(n?3).

"Named for Edmund Landau (1877 - 1938) who developed this notation for infinitesimal calculus.

C0O2412 26" October 2021 16

N2

P University of
@ Central Lancashire
UCLan

Asymptotic efficiency

Oftepwe are most interested in the aualitative scalina behaviour of alaorithms.

Examples
Fort

any g The Fibonacci algorithms have O(n) time and space efficiency.

| The number matching algorithms have O(n?) time efficiency; the
iterative one has O(1) space efficiency,’ the recursive one O(n).

For

nates

— From 3n3+ 12n + 17, we retain only 3n°.
— From 16-2" + 5n°, we retain only 16-2".

— If you are unsure, insert n = 1000 and see which term is greatest.

— Eliminate any leading factors; 3n® becomes O(n3), 16:2" becomes O(2").

N
If an ote

say, | "Unless you count the input size, which would contribute in O(n).
Namd Thisis why input size is usually excluded from space efficiency.

culus.

CO2412 26™ October 2021

17

N2

oy
Asymptotic efficiency

Oftepwe are most interested in the aualitative scalina behaviour of alaorithms.

Examples
Fort For

any g The Fibonacci algorithms have O(n) time and space efficiency.

| The number matching algorithms have O(n?) time efficiency; the

nates
iterative one has O(1) space efficiency,’ the recursive one O(n).
s this the best possible asymptotic efficiency, or can it be done in
a better way? This is a topic both for algorithm design (find better L test

solutions) and complexity theory (prove general lower bounds).

— Eliminate any leading factors; 3n® becomes O(n3), 16:2" becomes O(2").

Note
If an n

say, | "Unless you count the input size, which would contribute in O(n).

Namd Thisis why input size is usually excluded from space efficiency. culus.

C0O2412 26" October 2021 18

N2

P University of
@ Central Lancashire
UCLan

Why does the Fibonacci algorithm take linear time?

def fibonacci_iter(n):

fibo =[0, 1] 2 instructions
for kin range(2, n+1): loop executed n - 1 times:
— 1 instruction for the loop index
fibo.append(fibo[k-1] + fibo[k-2]) — 4 instructions
return fibo[n] 1 instruction

5(n-1)+ 3 = 5n -2 instructions

O(n) time efficiency

C0O2412 26" October 2021 19

N2

P University of
@ Central Lancashire
UCLan

Why does the Fibonacci algorithm take linear time?

def fibonacci_iter(n):

fibo =[0, 1] 2 instructions
for kin range(2, n+1): loop executed n - 1 times:
— 1 instruction for the loop index
fibo.append(fibo[k-1] + fibo[k-2]) — 4 instructions
return fibo[n] 1 instruction

5(n-1)+ 3 = 5n -2 instructions

O(n) time efficiency

The number of “instructions” assumed above is rather arbitrary. Asymptotic
efficiency analysis simpilifies this. In particular, any constants become “O(1)".

C0O2412 26" October 2021 20

N2

P University of
@ Central Lancashire
UCLan

Why does the Fibonacci algorithm take linear time?

def fibonacci_iter(n):

fibo =[0, 1] O(1) instructions

for k in range(2, n+1): loop executed O(n) times:
fibo.append(fibo[k-1] + fibo[k-2]) — O(1) instructions

return fibo[n] O(1) instructions

O(n-1)+ O(1) = O(n) instructions

O(n) time efficiency

The number of “instructions” assumed above is rather arbitrary. Asymptotic
efficiency analysis simplifies this. In particular, any constants become “O(1)".

C0O2412 26" October 2021 21

N2

P University of
@ Central Lancashire
UCLan

Why does our matching code take quadratic time?

def natmatch_iter(x, y): Note: Input size n given by len(x)
foriin range(len(x)): loop executed O(n) times:
forjin range(i+1, len(x)): — loop executed O(n) times:
if (x[i]l4+x[j] == y) and (x[i] '= x[j]): * O(1) instructions
return [x[i], x[j]] * O(1) optional instructions
return [] O(1) optional instructions

O(n) - O(n-1) + O(1) = O(n?) instructions

O(n?) time efficiency

C0O2412 26" October 2021 22

N2

oy
Memory efficiency evaluation

def natmatch_iter(x, y): Note: Input size n given by len(x)
foriin range(len(x)): 1 variable (i); used over all iterations
forjinrange(i+1, len(x)): — 1 variable (j); over all iterations
if (x[i]l4+x[j] == y) and (x[i] '= x[j]): * no new variables
return [x[i], x[j]] * no new variables
return [] no new variables

2 variables overall, therefore O(1)

O(1) memory efficiency

C0O2412 26" October 2021 23

University of
S&Q;cral Lancashire
Memory efficiency evaluation

def natmatch_iter(x, y): Note: Input size n given by len(x)
foriin range(len(x)): 1 variable (i); used over all iterations
forjinrange(i+1, len(x)): — 1 variable (j); over all iterations
if (x[i]+x[j] == y) and (x[i] = x[j]): * no new variables
return [x[i], x[j]] * no new variables
|f we iﬂClUde memaory reqUire- no new Variables
ments for storing the input, this
gives n + 3, therefore O(n). It is 2 variables overall, therefore O(1)
common not to include the input,
since it existed before; it does not O(1) memory efficiency
need any additional memory.

C0O2412 26" October 2021 24

N2

oy
Landau notation: Examples

1. Eliminate all except the leading contribution, i.e., the one that do-
minates the measure for large values of n; the one that grows fastest:

2. Eliminate constant coefficients; replace them by a factor 1.

Efficiency measure as a function of n Landau notation for the measure
24n% + 4n + 600 O(n?)
/n"2 4+ 3

n1/2:%

(n+1)n +2)

3(n"? + 5 logn)n

C0O2412 26" October 2021 25

N2

oy
Landau notation: Examples

1. Eliminate all except the leading contribution, i.e., the one that do-
minates the measure for large values of n; the one that grows fastest:

2. Eliminate constant coefficients; replace them by a factor 1.

Efficiency measure as a function of n Landau notation for the measure

24n? +%+ 600 O(n?)

/n'"? +/ O(n'?)

(n+1)n +2)

3(n"? + 5 logn)n

C0O2412 26" October 2021 26

N2

oy
Landau notation: Examples

1. Eliminate all except the leading contribution, i.e., the one that do-
minates the measure for large values of n; the one that grows fastest:

2. Eliminate constant coefficients; replace them by a factor 1.

Efficiency measure as a function of n Landau notation for the measure

24n? +%+ 600 O(n?)

7n1/2 _I_/ O(n'?2)
(n+ 1)n + 2) = n? +%+/Z/ O(n) - O(n) = O(n?)

3(n"2+ 5log n)-n

C0O2412 26" October 2021 27

N2

o
Remark on logarithms

In general, the logarithm is the inverse operation to exponentiation; both
require a base. However, for “log x,” a base is often assumed from context.

y =b" o x =log,y

Convention in engineering and natural sciences

If no base is given, log n means log, n, i.e., the decimal or decadic logarithm.

log,, 1=0, log,, 10 =1, log,, 100 =2, log,, 1000 =3, ...

C0O2412 26" October 2021 28

N2

o
Remark on logarithms

In general, the logarithm is the inverse operation to exponentiation; both
require a base. However, for “log x,” a base is often assumed from context.

y =b" o x =log,y

Convention in engineering and natural sciences

If no base is given, log n means log, n, i.e., the decimal or decadic logarithm.
log,, 1=0, log,, 10 =1, log,, 100 =2, log,, 1000 =3, ...

Convention in mathematics

If no base is given, log n means In n, the natural logarithm (base e = 2.71828...).

IN1=0, Ine=1,Ine?=2, Ine*=3,...| y=e" & y=exp(x) ® x =Iny

C0O2412 26" October 2021 29

Remark on logarithms

N2

P University of
@ Central Lancashire
UCLan

In general, the logarithm is the inverse operation to exponentiation; both

require a base.
log, n

log, n

Iogp g

const.

Convention in engineering and natural sciences

If no base is given, log n means log, n, i.e., the decimal or decadic logarithm.

log,, 1=0, log,, 10 =1, log,, 100 =2, log,, 1000 =3, ...

Convention in theoretical computer science

If no base is given, log n means log, n, i.e., the binary logarithm.

log,1=0, log,2=1, log,4 =2, log, 256 =8, log,1024 =10, log, 65536 = 16, ...

CO2412 26™ October 2021

30

N2

oy
Landau notation: Examples

1. Eliminate all except the leading contribution, i.e., the one that do-
minates the measure for large values of n; the one that grows fastest:

2. Eliminate constant coefficients; replace them by a factor 1.

Efficiency measure as a function of n Landau notation for the measure
n = 4 16 64 256 1024 4096 ...
logn = 0 2 4 6 8 10 12
n'? = 2 4 8 16 32 64

3(n"2+ 5logn)n O(n'?) - O(n) = O(n'"?- n') = O(n*7?)

... or simply O(n \/;)

C0O2412 26" October 2021 31

N2
P University of
@ Central Lancashire

UCLan

Time efficiency classification: Example

Specification: The function has two arguments, a list x containing n = len(x)
integer numbers, where multiple elements are allowed to have the same value,
and a single-digit integer 0 =y < 9. The function determines three numbers:

— g,, the number of elements of x with y as their final digit.

If the same number occurs twice in the list, it also counts twice.
In other words, g, is the number of indices i such that “x[i] % 10 == y".

Forx=[7,9,4,17,7,3]and y = 7, the value of g, would be 3.

This corresponds to the three indices 0, 3, and 4.

C0O2412 26" October 2021 32

N2

P University of
@ Central Lancashire
UCLan

Time efficiency classification: Example

Specification: The function has two arguments, a list x containing n = len(x)
integer numbers, where multiple elements are allowed to have the same value,
and a single-digit integer 0 =y < 9. The function determines three numbers:
— g,, the number of elements of x with y as their final digit.
If the same number occurs twice in the list, it also counts twice.
In other words, g, is the number of indices i such that “x[i] % 10 == y".
— g,, the number of combinations of two indices i and j, with i # j, such that

the product x[i] - x[j] has the remainder y upon division by 10. In other
words, g, is the number of ordered pairs (i, j) with “x[i]*x[j] % 10 == y".

As a consequence, each pair counts twice, once as (i, j), once as (j, i).

Forx=[7,9,4,17,7,3]andy =7, the value of g, would be 2.

This corresponds to the two ordered pairs of indices (1, 5) and (5, 1).

CO2412 26" October 2021 33

N2

P University of
@ Central Lancashire
UCLan

Time efficiency classification: Example

Specification: The function has two arguments, a list x containing n = len(x)
integer numbers, where multiple elements are allowed to have the same value,
and a single-digit integer 0 =y < 9. The function determines three numbers:

— g,, the number of elements of x with y as their final digit.

If the same number occurs twice in the list, it also counts twice.
In other words, g, is the number of indices i such that “x[i] % 10 == y".

— g,, the number of combinations of two indices i and j, with i # j, such that

the product x[i] - x[j] has the remainder y upon division by 10. In other
words, g, is the number of ordered pairs (i, j) with “x[i[*x[j] % 10 == y".

As a consequence, each pair counts twice, once as (i, j), once as (j, i).

— g, the number of combinations of three indices i, j, k such that the pro-

duct x[i] - x[j] - x[k] has y as its final digit; x[i], x[j], x[k] may be the same,
but i, j, k must be three different indices. Every such triple occurs in six
permutations: (i, j, k), (i, k, j), (j, i, k), (j, k, 1), (k, i, }), (k, j, I) - they count as six.

The function returns a list containing the three values [q., q,, q,].

C0O2412 26" October 2021 34

N2

P University of
@ Central Lancashire
UCLan

Time efficiency classification: Example

Specification: The
function has two
arguments, a list x

containing n = len(x)

integer numbers,
where multiple
elements are
allowed to have the
same value, and a
single-digit integer
O0<y=<9.The
function returns the

list [9,. 9, 9,

Problem size de-
fined as n = len(x).

CO2412

def mod10_count_naive(x, y):

ql,g2,93=0,0,0

for iin range(len(x)):

if x[i] % 10 ==y:
ql +=1
for j in range(len(x)):
ifi ==j:
continue
elif (x[i[*x[j]) % 10 ==y:
g2 +=1
for k in range(len(x)):
ifi==korj==k:
continue
elif (x[i]*x[jI*x[k]) % 10 ==y:
q3 +=1
return [g1, g2, 3]

26™ October 2021 35

N2

P University of
@ Central Lancashire
UCLan

Time efficiency classification: Example

Specification: The
function has two
arguments, a list x

containing n = len(x)

integer numbers,
where multiple
elements are
allowed to have the
same value, and a
single-digit integer
O0<y=<9.The
function returns the

list [9,. 9, 9,

Problem size de-
fined as n = len(x).

CO2412

def mod10_count_naive(x, y):

91,92,93=0,0,0 -—0 done once
for iin range(len(x)):

if x[i] % 10 ==y: -~

ql +=1 done n times

for j in range(len(x)):

if i ==j: done n? times
continue -—

elif (x[i[*x[j]) % 10 ==y:
g2 +=1 done n3 times

for k in range(len(x)):
ifi==korj==k:

continue
elif (x[i]*x[jI*x[k]) % 10 ==y:

93 += 1 / done once
return [g1, g2, 93]

26™ October 2021 36

N2

i
Time efficiency classification: Example

Specification: The def mod10_count_naive(x, y):

function has two q1,92,93=0,0,0 -—u done once

ar . , ;
cof Eliminate all except the leading)

° ° . \ .
int Contrlbutlon, l.e., the one that done n times
dominates the measure for large values ,
wih (x)):
ol of n; the one that grows fastest.

PR done n? times
all

O(n3) + O(n?) + O(n) + O(1) = O(n3)

sa b, 10 ==y _
single-digit integer gZ = 1 done n® times
0<sy=<9.The for k in range(len(x)):

function returns the ifi==korj==k:

list[q,, 9, 9, continue

elif (x[i]*x[jI*x[k]) % 10 ==y:

d
Problem size de- g3 +=1 / one onee
return [g1, g2, 93]

fined as n = len(x).

C0O2412 26" October 2021 37

N2

P University of
@ Central Lancashire
UCLan

Average performance of q., q,, q, computations

=
o

average runtime in seconds
o
M

0.0 1

CO2412

o
o

o
o

o
[

time requirements
are cubicinn

notation: O(n3)

"order of n3"

Challenge: Make it
better than O(n3)

0 25 50 75 100 125 150 175 200
input list size

26™ October 2021 38

Al
w28 | University of

>y Central Lancashire
¥ UCLan

Terminology and
building a glossary

CO2412 26" October 2021

2 | University of

£y Central Lancashire
)

UCLan

CO2412
Computational Thinking

Formal verification #2
Algorithmic efficiency #2
Terminology and building a glossary

Where opportunity creates success

