University of
Central Lancashire UCLan

CO2412
 Computational Thinking

Formal verification \#2
Algorithmic efficiency \#2
Terminology and building a glossary

Where opportunity creates success

Formal verification \#2

Preconditions and postconditions

def $\operatorname{grtfrac}(x, y)$:
if $(x-x / / 1)>(y-y / / 1)$:
return x
else:
return y

Note

Consider the statement "return x " from transition $S_{1} \rightarrow S_{3}$:

- The execution state S_{1} is the precondition of $S_{1} \rightarrow S_{3}$.
- The execution state S_{3} is the postcondition of $S_{1} \rightarrow S_{3}$.

Initial and final conditions matching the specification

```
def grtfrac(x, y):
    if (x-x//1)> (y-y//1):
        return x
    else:
        return y
```


$S_{0}: x$ and y are floating-point numbers (by specification).
$S_{1}: x, y$ as above; the fractional part of x is greater than that of y.
$S_{2}: x, y$ as above; the fractional part of y is greater than that of x, or equal.
S_{3} : The fractional part of x is the greater one, and x was returned.
S_{4} : The fractional part of y is greater (or they are equal); y was returned.

Loop invariants

$S_{0}: x$ and y given as specified.
S_{1}, invariant: $0 \leq \mathrm{i}<\operatorname{len}(\mathrm{x})$.
S_{4}, invariant: $0 \leq \mathrm{i}<\operatorname{len}(\mathrm{x})$, $\mathrm{i}<\mathrm{j}<\operatorname{len}(\mathrm{x})$, all indices smaller than i did not yield a match, and $x[i]$ does not match with any $\mathrm{x}[\mathrm{k}]$ for indices $\mathrm{i}<\mathrm{k}<\mathrm{j}$.
S_{8}, invariant: As above, and $x[i]$ does not match with any $x[k]$ for indices $i<k \leq j$.
$S_{5^{\prime}}$ invariant: As above, and we now know that $x[i]$ does not yield a match with any other element. (And neither did any smaller i.)

Initial and final conditions

$S_{0}: x$ and y given as specified.
$S_{1}: 0 \leq i<\operatorname{len}(x)$.
S_{5} : No combination of any $x[i]$ that was tried so far, with any $x[j]$ from the list where $\mathrm{i}<\mathrm{j}$, produces a valid match.
$\mathrm{S}_{6}: x[i]$ and $x[j]$ are a match.
S_{7} : Match found and returned.
S_{2} : End of list, all pairs of elements were tried, none matched.
$S_{3}:$ No match; [] was returned.

Application to debugging

Breakpoints at:

- $S_{0^{\prime}}$ output x and y
- $S_{3^{\prime}}$ output status message
- S_{7}, output $\mathrm{i}, \mathrm{j}, \mathrm{x}[\mathrm{i}], x[j]$, and their sum
- $S_{8^{\prime}}$ output $\mathrm{i}, \mathrm{j}, \mathrm{x}[\mathrm{i}], x[j]$, and their sum

Algorithmic efficiency \#2

Average performance of Fibonacci codes

Average performance of number-matching codes

Algorithm efficiency as a function of problem size

Usually we are not interested in the efficiency of an algorithm for a single input value, but in understanding how the efficiency behaves as a function of a characteristic quantity, the problem size \boldsymbol{n}, that describes the magnitude of the task.

We distinguish between:

- Time efficiency measure(s), describing CPU time in an abstract way; one possible measure for it is the number of code/pseudocode instructions.
- Space or memory efficiency measure(s), describing the memory in an abstract way, e.g., by the number of elementary values stored in variables, data structures, or files; this usually excludes the initial input.
- Worst-case efficiency, which for any given problem size n corresponds to the special case of size n with the greatest computing time/memory.
- Average-case efficiency, over all (or many representative) cases of size n.

There is also "best-case efficiency," but usually not as an evaluation criterion.

Algorithm efficiency as a function of problem size

Usually we are not interested in the efficiency of an algorithm for a single input value, but in understanding how the efficiency behaves as a function of a characteristic quantity, the problem size n, that describes the magnitude of the task.

We distinguish between:

Remark

There is no universal rule for how the problem size n should be defined. It is up to the person analysing an algorithm to define it appropriately. It should describe how complicated the task is.

Common choices are the length of the input (e.g., if given as an array or string), the value passed as of one of the arguments of a function, or the number of elements stored in a data structure.

There is also "best-case efficiency," but usually not as an evaluation criterion.

Asymptotic efficiency

Often we are most interested in the qualitative scaling behaviour of algorithms.
For this purpose, Landau notation is used, ${ }^{1}$ also known as "big O notation." For any given efficiency measure, this is obtained as follows:

- Eliminate all except the leading contribution, i.e., the one that dominates the measure for large values of n. It is the one that grows fastest:
- From $3 n^{3}+12 n+17$, we retain only $3 n^{3}$.
- From $16 \cdot 2^{n}+5 n^{3}$, we retain only $16 \cdot 2^{n}$.
- If you are unsure, insert $n=1000$ and see which term is greatest.
- Eliminate constant coefficients; $3 n^{3}$ becomes $O\left(n^{3}\right), 16 \cdot 2^{n}$ becomes $O\left(2^{n}\right)$.
${ }^{1}$ Named for Edmund Landau (1877-1938) who developed this notation for infinitesimal calculus.

Asymptotic efficiency

Often we are most interested in the qualitative scaling behaviour of algorithms.
For this purpose, Landau notation is used, ${ }^{1}$ also known as "big O notation." For any given efficiency measure, this is obtained as follows:

- Eliminate all except the leading contribution, i.e., the one that dominates the measure for large values of n. It is the one that grows fastest:
- From $3 n^{3}+12 n+17$, we retain only $3 n^{3}$.
- From $16 \cdot 2^{n}+5 n^{3}$, we retain only $16 \cdot 2^{n}$.
- If you are unsure, insert $n=1000$ and see which term is greatest.
- Eliminate constant coefficients; $3 n^{3}$ becomes $O\left(n^{3}\right), 16 \cdot 2^{n}$ becomes $O\left(2^{n}\right)$.

If an algorithm includes $3 n^{3}+12 n+17$ instructions in the worst case, we can say, it is in time efficiency class $O\left(n^{3}\right)$, or simply, it has time efficiency $O\left(n^{3}\right)$.
${ }^{1}$ Named for Edmund Landau (1877-1938) who developed this notation for infinitesimal calculus.

Asymptotic efficiency

Often we are most interested in the qualitative scaling behaviour of algorithms.
For this purpose, Landau notation is used, ${ }^{1}$ also known as "big O notation." For any given efficiency measure, this is obtained as follows:

Observation

Landau notation describes the "shape of the curve" for great n.
The asymptotic efficiency class of an algorithm is the same as the asymptotic performance class of any reasonable implementation.

For most algorithms, the distinction between the average and the If al worst case disappears if considered in terms of Landau notation.

Asymptotic efficiency

Oftep we are most interested in the awalitative scalina behaviour of alonrithms.

Examples

Fort
any $₫$ The Fibonacci algorithms have $O(n)$ time and space efficiency.
The number matching algorithms have $O\left(n^{2}\right)$ time efficiency; the iterative one has $O(1)$ space efficiency, the recursive one $O(n)$.

- From $3 n^{3}+12 n+17$, we retain only $3 n^{3}$.
- From $16 \cdot 2^{n}+5 n^{3}$, we retain only $16 \cdot 2^{n}$.
- If you are unsure, insert $n=1000$ and see which term is greatest.
- Eliminate any leading factors; $3 n^{3}$ becomes $O\left(n^{3}\right), 16 \cdot 2^{n}$ becomes $O\left(2^{n}\right)$.

If an algorithm includes $3 n^{3}+12 n+17$ instructions in the worst case, we can say, it is in time efficiency class $O\left(n^{3}\right)$, or simply, it has time efficiency $O\left(n^{3}\right)$.
${ }^{1}$ Named for Edmund Landau (1877-1938) who developed this notation for infinitesimal calculus.

Asymptotic efficiency

Oftep we are most interested in the awalitative scalina_behaviour of alorrithms.

Examples

Fort
any $₫$ The Fibonacci algorithms have $O(n)$ time and space efficiency.
The number matching algorithms have $O\left(n^{2}\right)$ time efficiency; the iterative one has $O(1)$ space efficiency, ${ }^{1}$ the recursive one $O(n)$.

- From $3 n^{3}+12 n+17$, we retain only $3 n^{3}$.
- From $16 \cdot 2^{n}+5 n^{3}$, we retain only $16 \cdot 2^{n}$.
- If you are unsure, insert $n=1000$ and see which term is greatest.
- Eliminate any leading factors; $3 n^{3}$ becomes $O\left(n^{3}\right), 16 \cdot 2^{n}$ becomes $O\left(2^{n}\right)$.

Asymptotic efficiency

Oftep we are most interested in the awalitative scalina behaviour of alorithms.

Examples

Fort
any $₫$ The Fibonacci algorithms have $O(n)$ time and space efficiency.
The number matching algorithms have $O\left(n^{2}\right)$ time efficiency; the iterative one has $O(1)$ space efficiency, ${ }^{1}$ the recursive one $O(n)$.

Is this the best possible asymptotic efficiency, or can it be done in a better way? This is a topic both for algorithm design (find better solutions) and complexity theory (prove general lower bounds).

- Eliminate any leading factors; $3 n^{3}$ becomes $O\left(n^{3}\right), 16 \cdot 2^{n}$ becomes $O\left(2^{n}\right)$.

If an Note
say, i ${ }^{1}$ Unless you count the input size, which would contribute in $O(n)$. This is why input size is usually excluded from space efficiency.

Why does the Fibonacci algorithm take linear time?

def fibonacci_iter(n):
fibo $=[0,1]$
for k in range $(2, n+1)$:
fibo.append(fibo[k-1] + fibo[k-2])
return fibo[n]

2 instructions
loop executed $n-1$ times:

- 1 instruction for the loop index
- 4 instructions

1 instruction
$5(n-1)+3=5 n-2$ instructions
$\mathrm{O}(\mathrm{n})$ time efficiency

Why does the Fibonacci algorithm take linear time?

def fibonacci_iter(n):
fibo $=[0,1]$
for k in range $(2, n+1)$:
fibo.append(fibo[k-1] + fibo[k-2])
return fibo[n]

2 instructions
loop executed $n-1$ times:

- 1 instruction for the loop index
- 4 instructions

1 instruction

$$
5(n-1)+3=5 n-2 \text { instructions }
$$

$O(n)$ time efficiency

The number of "instructions" assumed above is rather arbitrary. Asymptotic efficiency analysis simplifies this. In particular, any constants become "O(1)".

Why does the Fibonacci algorithm take linear time?

def fibonacci_iter(n):
fibo $=[0,1]$
for k in range $(2, n+1)$:
fibo.append(fibo[k-1] + fibo[k-2])
return fibo[n]

O(1) instructions
loop executed $\mathbf{O}(n)$ times:

- O(1) instructions

O(1) instructions
$O(n \cdot 1)+O(1)=O(n)$ instructions
$\mathrm{O}(n)$ time efficiency

The number of "instructions" assumed above is rather arbitrary. Asymptotic efficiency analysis simplifies this. In particular, any constants become " $O(1)$ ".

Why does our matching code take quadratic time?

def natmatch_iter(x, y):
for i in range(len $(x))$:

$$
\begin{aligned}
& \text { for } j \text { in range }(i+1 \text {, len }(x)) \text { : } \\
& \qquad \begin{array}{l}
\text { if }(x[i]+x[j]==y) \text { and }(x[i]!=x[j]) \text { : } \\
\quad \text { return }[x[i], x[j]]
\end{array}
\end{aligned}
$$

return []

Note: Input size n given by len(x)
loop executed $O(n)$ times:

- loop executed $O(n)$ times:
- $O(1)$ instructions
- $O(1)$ optional instructions

O(1) optional instructions
$O(n) \cdot O(n \cdot 1)+O(1)=O\left(n^{2}\right)$ instructions
$\mathrm{O}\left(n^{2}\right)$ time efficiency

Memory efficiency evaluation

def natmatch_iter(x, y):
for i in range(len $(x))$:

$$
\begin{aligned}
& \text { for } j \text { in range }(i+1, \text { len }(x)) \text { : } \\
& \text { if }(x[i]+x[j]==y) \text { and }(x[i]!=x[j]) \text { : } \\
& \quad \text { return }[x[i], x[j]]
\end{aligned}
$$

return []

Note: Input size n given by len(x)
1 variable (i); used over all iterations

- 1 variable (j); over all iterations
- no new variables
- no new variables
no new variables

2 variables overall, therefore $\mathrm{O}(1)$
$O(1)$ memory efficiency

Memory efficiency evaluation

def natmatch_iter(x, y):
for i in range (len(x)):
for j in range($\mathrm{i}+1, \operatorname{len}(\mathrm{x}))$:

$$
\text { if }(x[i]+x[j]==y) \text { and }(x[i]!=x[j]):
$$

return [x[i], x[j]]
If we include memory requirements for storing the input, this gives $n+3$, therefore $O(n)$. It is common not to include the input, since it existed before; it does not need any additional memory.

Note: Input size n given by len(x)
1 variable (i); used over all iterations

- 1 variable (j); over all iterations
- no new variables
- no new variables
no new variables
2 variables overall, therefore $\mathrm{O}(1)$
O(1) memory efficiency

Landau notation: Examples

1. Eliminate all except the leading contribution, i.e., the one that dominates the measure for large values of n; the one that grows fastest:
2. Eliminate constant coefficients; replace them by a factor 1.

Efficiency measure as a function of n
$24 n^{2}+4 n+600$
$7 n^{1 / 2}+3$
$(n+1)(n+2)$
$3\left(n^{1 / 2}+5 \log n\right) \cdot n$
Landau notation for the measure
$O\left(n^{2}\right)$

$$
n^{1 / 2}=\sqrt{n}
$$

Landau notation: Examples

1. Eliminate all except the leading contribution, i.e., the one that dominates the measure for large values of n; the one that grows fastest:
2. Eliminate constant coefficients; replace them by a factor 1.

Efficiency measure as a function of n
$24 n^{2}+4 h+600$
$7 n^{1 / 2}+\beta$
$(n+1)(n+2)$
$3\left(n^{1 / 2}+5 \log n\right) \cdot n$

Landau notation: Examples

1. Eliminate all except the leading contribution, i.e., the one that dominates the measure for large values of n; the one that grows fastest:
2. Eliminate constant coefficients; replace them by a factor 1 .

Efficiency measure as a function of n
$24 n^{2}+4 h+600$
$7 n^{1 / 2}+\nsim$
$(n+1)(n+2)=n^{2}+3 / n+2$
$3\left(n^{1 / 2}+5 \log n\right) \cdot n$

Remark on logarithms

In general, the logarithm is the inverse operation to exponentiation; both require a base. However, for "log x," a base is often assumed from context.

$$
y=b^{x} \Leftrightarrow x=\log _{b} y
$$

Convention in engineering and natural sciences
If no base is given, $\log n$ means $\log _{10} n$, i.e., the decimal or decadic logarithm.
$\log _{10} 1=0, \log _{10} 10=1, \log _{10} 100=2, \log _{10} 1000=3, \ldots$

Remark on logarithms

In general, the logarithm is the inverse operation to exponentiation; both require a base. However, for "log x," a base is often assumed from context.

$$
y=b^{x} \Leftrightarrow x=\log _{b} y
$$

Convention in engineering and natural sciences
If no base is given, $\log n$ means $\log _{10} n$, i.e., the decimal or decadic logarithm.
$\log _{10} 1=0, \log _{10} 10=1, \log _{10} 100=2, \log _{10} 1000=3, \ldots$
Convention in mathematics
If no base is given, $\log n$ means $\ln n$, the natural logarithm (base $e=2.71828 \ldots$).
$\ln 1=0, \ln e=1, \ln e^{2}=2, \ln e^{3}=3, \ldots y=e^{x} \Leftrightarrow y=\exp (x) \Leftrightarrow x=\ln y$

Remark on logarithms

In general, the logarithm is the inverse operation to exponentiation; both require a base.

$$
\frac{\log _{p} n}{\log _{q} n}=\log _{p} q=\text { const. }
$$

Convention in engineering and natural sciences
If no base is given, $\log n$ means $\log _{10} n$, i.e., the decimal or decadic logarithm.
$\log _{10} 1=0, \log _{10} 10=1, \log _{10} 100=2, \log _{10} 1000=3, \ldots$
Convention in theoretical computer science
If no base is given, $\log n$ means $\log _{2} n$, i.e., the binary logarithm.
$\log _{2} 1=0, \log _{2} 2=1, \log _{2} 4=2, \log _{2} 256=8, \log _{2} 1024=10, \log _{2} 65536=16, \ldots$

Landau notation: Examples

1. Eliminate all except the leading contribution, i.e., the one that dominates the measure for large values of n; the one that grows fastest:
2. Eliminate constant coefficients; replace them by a factor 1.

Efficiency measure as a function of n
Landau notation for the measure

n	$=$	1	4	16	64	256	1024	$4096 \ldots$
$\log n$	$=$	0	2	4	6	8	10	12
$n^{1 / 2}$	$=$	1	2	4	8	16	32	64

$3\left(n^{1 / 2}+5 \log n\right) \cdot n$

$$
O\left(n^{1 / 2}\right) \cdot O(n)=O\left(n^{1 / 2} \cdot n^{1}\right)=O\left(n^{3 / 2}\right)
$$

... or simply $O(n \sqrt{n})$

Time efficiency classification: Example

Specification: The function has two arguments, a list \mathbf{x} containing $n=\operatorname{len}(x)$ integer numbers, where multiple elements are allowed to have the same value, and a single-digit integer $0 \leq y \leq 9$. The function determines three numbers:

- q_{1}, the number of elements of x with y as their final digit.

If the same number occurs twice in the list, it also counts twice. In other words, q_{1} is the number of indices i such that "x[i] \% $10==y$ ".

For $x=[7,9,4,17,7,3]$ and $y=7$, the value of q_{1} would be 3 .
This corresponds to the three indices 0,3 , and 4 .

Time efficiency classification: Example

Specification: The function has two arguments, a list \mathbf{x} containing $n=\operatorname{len}(x)$ integer numbers, where multiple elements are allowed to have the same value, and a single-digit integer $0 \leq y \leq 9$. The function determines three numbers:

- q_{1}, the number of elements of x with y as their final digit. If the same number occurs twice in the list, it also counts twice. In other words, q_{1} is the number of indices i such that "x[i] \% $10==y$ ".
- q_{2}, the number of combinations of two indices i and j, with $i \neq j$, such that the product $\mathbf{x}[\mathbf{i}] \cdot \mathbf{x}[j]$ has the remainder \mathbf{y} upon division by 10 . In other words, q_{2} is the number of ordered pairs (i, j) with "x[i]*x[j] \% $10==y$ ". As a consequence, each pair counts twice, once as (i, j), once as (j, i).

For $x=[7,9,4,17,7,3]$ and $y=7$, the value of q_{2} would be 2 .
This corresponds to the two ordered pairs of indices $(1,5)$ and $(5,1)$.

Time efficiency classification: Example

Specification: The function has two arguments, a list \mathbf{x} containing $n=\operatorname{len}(x)$ integer numbers, where multiple elements are allowed to have the same value, and a single-digit integer $0 \leq y \leq 9$. The function determines three numbers:

- q_{1}, the number of elements of x with y as their final digit. If the same number occurs twice in the list, it also counts twice. In other words, q_{1} is the number of indices i such that "x[i] \% $10==y$ ".
- q_{2}, the number of combinations of two indices i and j, with $i \neq j$, such that the product $\mathbf{x}[\mathbf{i}] \cdot \mathbf{x}[j]$ has the remainder \mathbf{y} upon division by 10 . In other words, q_{2} is the number of ordered pairs (i, j) with "x[i]*x[j] \% $10==y$ ". As a consequence, each pair counts twice, once as (i, j), once as (j, i).
- $q_{3^{\prime}}$ the number of combinations of three indices i, j, k such that the pro-
 but i, j, k must be three different indices. Every such triple occurs in six permutations: (i, j, k), (i, k, j), (j, i, k), (j, k, i), (k, i, j), ($k, j, l)$ - they count as six.

The function returns a list containing the three values $\left[q_{1}, q_{2}, q_{3}\right]$.

Time efficiency classification: Example

Specification: The function has two arguments, a list \mathbf{x} containing $n=\operatorname{len}(x)$ integer numbers, where multiple elements are allowed to have the same value, and a single-digit integer $0 \leq y \leq 9$. The function returns the list $\left[q_{1}, q_{2}, q_{3}\right]$.

Problem size defined as $n=\operatorname{len}(x)$.

```
def mod10_count_naive(x, y):
    q1,q2,q3 = 0, 0,0
    for i in range(len(x)):
    if }x[i]% 10== y:
        q1 += 1
    for j in range(len(x)):
        if i== j:
            continue
        elif(x[i]*x[j]) % 10== y:
            q2 += 1
        for k in range(len(x)):
            if i == k or j == k:
                continue
            elif(x[i]*x[j]*x[k]) % 10== y:
        q3 += 1
    return[q1, q2, q3]
```


Time efficiency classification: Example

Specification: The function has two arguments, a list \mathbf{x} containing $n=\operatorname{len}(x)$ integer numbers, where multiple elements are allowed to have the same value, and a single-digit integer $0 \leq y \leq 9$. The function returns the list $\left[q_{1}, q_{2}, q_{3}\right]$.

Problem size defined as $n=\operatorname{len}(x)$.

Time efficiency classification: Example

ar
co
int
all
sa
single-digit integer
$0 \leq y \leq 9$. The function returns the list $\left[q_{1}, q_{2}, q_{3}\right]$.
continue

Problem size de-

Specification: The
function has two

$$
q 1, q 2, q 3=0,0,0
$$

Eliminate all except the leading contribution, i.e., the one that
wh dominates the measure for large values of n; the one that grows fastest.
ele of n; the one that grows fastest.

$$
\text { def mod10_count_naive(} x, y \text {): }
$$

$$
\mathrm{O}\left(n^{3}\right)+\mathrm{O}\left(n^{2}\right)+\mathrm{O}(n)+\mathrm{O}(1)=\mathrm{O}\left(n^{3}\right)
$$

$$
q^{3}+=1
$$ fined as $n=\operatorname{len}(x)$.

$$
\text { return }[q 1, q 2, q 3]
$$

$$
\begin{aligned}
& \mathrm{q} \angle+=1 \\
& \text { or } \mathrm{k} \text { in range }(\operatorname{len}(\mathrm{x})) \text {): } \\
& \text { if } \mathrm{i}==\mathrm{k} \text { or } \mathrm{j}==\mathrm{k} \text { : }
\end{aligned}
$$

$$
\operatorname{elif}\left(x[i]^{*} x[j]^{*} x[k]\right) \% \quad 10==y:
$$

Average performance of q_{1}, q_{2}, q_{3} computations

Terminology and building a glossary

University of
Central Lancashire UCLan

CO2412
 Computational Thinking

Formal verification \#2
Algorithmic efficiency \#2
Terminology and building a glossary

Where opportunity creates success

