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Design strategy: Brute force

Initial analysis: What is the space of all conceivable solutions to the problem, 
for the given input? Check all parameters/options and devise an scheme that 
iterates over all the permitted values and their combinations.

Brute-force design strategy: Evaluate all potential solutions, one by one.

Strengths of the strategy: The code is easy to write, and it is easy to prove that 
it is correct. Beyond the initial analysis, not much needs to be figured out.

Weakness of the strategy: Reusing information might reduce the relevant 
number of candidate solutions. This is not done; instead, all are tried out.

While there are some problems that can be addressed in this way, most cannot; 
the space of solutions that need to be enumerated usually grows too fast.
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Example problem: Maximum sublist sum

Specification of a function solving the maximum sublist sum problem

Precondition (of the function), i.e., initial execution state: One argument is 
passed to the function, namely, a list of floating-point and/or integer numbers.

Postcondition (of the function), i.e., final execution state: The function returns a 
sublist, i.e., a contiguous part of the original list, such that the sum over all 
elements of the sublist is as large as possible.

Example: The list given by

x = [–147, 72, –49, 40, 46, 35, 26, –69, 21, –5, –52, –40, 6, –133, 36]

has the maximum sublist x[1: 7] = [72, –49, 40, 46, 35, 26] with the sum 170.
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def brute_force_sublist(x):
    left_idx, right_idx = 0, 0
    max_sublist_sum = 0
    for i in range(len(x)):
        for j in range(i+1, len(x)+1):
            sublist_sum = 0
            for k in range(i, j):
                sublist_sum += x[k]
            if sublist_sum > max_sublist_sum:
                left_idx = i
                right_idx = j
                max_sublist_sum = sublist_sum
    return x[left_idx: right_idx]

Brute-force maximum-sublist-sum algorithm

Summary:
– Try out all possible 

sublists, with index i 
running over all possible 
left limits and j over all 
right limits (greater than i)

– Evaluate the sum of the 
elements of each sublist

– Keep track of the 
maximum; finally, return 
the maximum sublist
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Greedy algorithms are based on the idea of making the best local 
improvement (i.e., the best immediately visible small change) to a partial 
solution. They consider one candidate solution only and build it up gradually.

Design strategy: Greedy algorithms

Image source: BBC

Image source: City College Norwich

Strength: Systematic and
easy to implement.

Weakness: It does not solve all problems correctly; but even then, it might 
return an acceptable suboptimal result or an approximation to the solution.
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def selection_sort(x):
    for i in range(len(x)):

        min_idx = i
        for j in range(i+1, len(x)):
            if x[j] < x[min_idx]:
                min_idx = j

        next_element = x.pop(min_idx)
        x.insert(i, next_element)

Selection sort (greedy)
Test list: [8, 58, 25, 48, 19, 39, 76, 6, 11, 86, 75]

Sorted part of the list:
[6]
Unsorted part of the list:
[8, 58, 25, 48, 19, 39, 76, 11, 86, 75]

Sorted part of the list:
[6, 8]
Unsorted part of the list:
[58, 25, 48, 19, 39, 76, 11, 86, 75]

...

Sorted part of the list:
[6, 8, 11, 19, 25, 39, 48, 58, 75]
Unsorted part of the list:
[76, 86]

Sorted part of the list:
[6, 8, 11, 19, 25, 39, 48, 58, 75, 76]
Unsorted part of the list:
[86]

Sorted part of the list:
[6, 8, 11, 19, 25, 39, 48, 58, 75, 76, 86]
Unsorted part of the list:
[]

all before index i is sorted

min_idx is the index of the smallest 
element from the unsorted part

all until (including) index i is sorted

the whole list is sorted
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Decomposition breaks a problem down into smaller subtasks. For the two 
decomposition techniques discussed today, divide-and-conquer and dynamic 
programming, subtasks are subproblems: Smaller versions of the problem.

The solution of a subproblem then is a partial solution for the whole problem.

Design strategy: Divide and conquer

In divide-and-conquer, subproblems do not overlap (or they are assumed not 
to overlap). Each subproblem occurs once, and hence, each partial solution is 
used only once. It need not be stored anywhere beyond its single use.

k
< k First divide,

then conquer,

finally combine the results.
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Mergesort: Divide and conquer

List: [20, 22, 4, 89, 110, 52, 60, 79, 58, 9, 87]

Merging x[0:1] = [20] with x[1:2] = [22]
Merged to x[0:2] = [20, 22]

Merging x[2:3] = [4] with x[3:4] = [89]
Merged to x[2:4] = [4, 89]

Merging x[4:5] = [110] with x[5:6] = [52]
Merged to x[4:6] = [52, 110]

Merging x[6:7] = [60] with x[7:8] = [79]
Merged to x[6:8] = [60, 79]

Merging x[8:9] = [58] with x[9:10] = [9]
Merged to x[8:10] = [9, 58]

(Nothing to be done for x[10].)

20  22  4  89  110  52  60  79  58  9  87

20  22  4  89  110  52  60  79  58  9  87

20  22  4  89  110  52  60  79  58  9  87

20  22  4  89  110  52  60  79  58  9  87

20  22  4  89  110  52  60  79  58  9  87

20  22  4  89  52  110  60  79  58  9  87

20  22  4  89  52  110  60  79  58  9  87

20  22  4  89  52  110  60  79  58  9  87

20  22  4  89  52  110  60  79  58  9  87

20  22  4  89  52  110  60  79  9  58  87

20  22  4  89  52  110  60  79  9  58  87

sublist_size = 1
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Mergesort: Divide and conquer

Merging x[0:2] = [20, 22] with x[2:4] = [4, 89]
Merged to x[0:4] = [4, 20, 22, 89]

Merging x[4:6] = [52, 110] with x[6:8] = [60, 79]
Merged to x[4:8] = [52, 60, 79, 110]

Merging x[8:10] = [9, 58] with x[10:11] = [87]
Merged to x[8:11] = [9, 58, 87]

Merging x[0:4] = [4, …] with x[4:8] = [52, …]
Merged to x[0:8] = [4, …, 110]

(Nothing to be done for x[8:11].)

Merging x[0:8] = [4, …] with x[8:11] = [9, …]
Merged to x[0:11] = [4, …, 110]

20  22  4  89  52  110  60  79  9  58  87

4  20  22  89  52  110  60  79  9  58  87

4  20  22  89  52  110  60  79  9  58  87

4  20  22  89  52  60  79  110  9  58  87

4  20  22  89  52  60  79  110  9  58  87

4  20  22  89  52  60  79  110  9  58  87

4  20  22  89  52  60  79  110  9  58  87

4  20  22  52  60  79  89  100  9  58  87

4  20  22  52  60  79  89  100  9  58  87

4  20  22  52  60  79  89  100  9  58  87

4  9  20  22  52  58  60  79  87  89  100

sublist_size = 2

sublist_size = 4

sublist_size = 8
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Design strategies: Overview

Design strategies concern algorithm and code development at a more 
abstract level than that of its implementation. They are established approaches 
for designing algorithms; they all have their own strengths and weaknesses.

– Brute force: Check all possible solutions, determine the right/best one.
– Greedy algorithms: Build the solution step by step until it is complete.
– Decomposition by divide-and-conquer or by dynamic programming.

We have seen many algorithm design elements in use so far, including:

– Case distinctions
– Recursive function calls
– Nested loops
– Dynamic data structures (lists, dictionaries, etc.)
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Design strategies: Overview

Design strategies concern algorithm and code development at a more 
abstract level than that of its implementation. They are established approaches 
for designing algorithms; they all have their own strengths and weaknesses.

– Brute force: Check all possible solutions, determine the right/best one.
– Greedy algorithms: Build the solution step by step until it is complete.
– Decomposition by divide-and-conquer or by dynamic programming.

Brute force

Greedy 
algorithms

Decomposition
techniques

Easy to implement 
and to verify

Easy to implement, 
often very efficient

Powerful by reduction 
to subproblems
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Design strategies: Overview

Design strategies concern algorithm and code development at a more 
abstract level than that of its implementation. They are established approaches 
for designing algorithms; they all have their own strengths and weaknesses.

– Brute force: Check all possible solutions, determine the right/best one.
– Greedy algorithms: Build the solution step by step until it is complete.
– Decomposition by divide-and-conquer or by dynamic programming.

Brute force

Greedy 
algorithms

Decomposition
techniques

Easy to implement 
and to verify

Easy to implement, 
often very efficient

Powerful by reduction 
to subproblems

Scales with size of solution space, 
often forbiddingly expensive

Not all problems are accessible 
to this kind of approach

Requires a thorough analysis of 
the problem and its subproblems
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Dynamic
programming
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Where the decomposition of a problem into smaller parts leads to mutually 
overlapping subproblems, divide-and-conquer (e.g., implemented by 
multiple recursion) might recompute the same partial solution many times.

Divide-and-conquer: Limitations

k – 1 k – 2

k – 2 k – 3 k – 3 k – 4

k

k – 3 k – 4 k – 4 k – 4 k – 5k – 5 k – 5 k – 6

Fibonacci sequence: First 
attempt at decomposition.

F0  =  0

F1  =  1

Fk  =  Fk–1 + Fk–2 ,  for k > 1

0, 1, 1, 2, 3, 5, 8, 13, …

Fibonacci sequence
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Where the decomposition of a problem into smaller parts leads to mutually 
overlapping subproblems, divide-and-conquer (e.g., implemented by 
multiple recursion) might recompute the same partial solution many times.

Divide-and-conquer: Limitations

k – 1 k – 2

k – 2 k – 3 k – 3 k – 4

k

k – 3 k – 4 k – 4 k – 4 k – 5k – 5 k – 5 k – 6

Fibonacci sequence: First 
attempt at decomposition.

F0  =  0

F1  =  1

Fk  =  Fk–1 + Fk–2 ,  for k > 1

0, 1, 1, 2, 3, 5, 8, 13, …

Fibonacci sequenceThe subproblems from the two 
branches (for k – 1 and k – 2) overlap: 
They both contain the k – 3 subproblem.
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Where the decomposition of a problem into smaller parts leads to mutually 
overlapping subproblems, divide-and-conquer (e.g., implemented by 
multiple recursion) might recompute the same partial solution many times.

To improve the decomposition efficiency in such cases, it can help to store 
and recall partial solutions. This strategy is called dynamic programming.

Design strategy: Dynamic programming

k – 1 k – 2

k – 2 k – 3 k – 3 k – 4

k

k – 3 k – 4 k – 4 k – 4 k – 5k – 5 k – 5 k – 6

k – 1 k – 2

k – 2 k – 3

k

k – 3 k – 4

store and recall 
partial solutions 

Fibonacci sequence: First 
attempt at decomposition.

Fibonacci sequence: O(n) time 
solution by dynamic programming.
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def kadane_sublist(x):
    left_idx, right_idx = 0, 0
    max_sublist_sum = 0
    i = 0
    sublist_sum = 0

    for j in range(len(x)):
        sublist_sum += x[j]
        if sublist_sum < 0:
            i = j+1
            sublist_sum = 0
        elif sublist_sum > max_sublist_sum:
            left_idx, right_idx = i, j+1
            max_sublist_sum = sublist_sum

    return x[left_idx: right_idx]

Kadane’s algorithm: Dynamic programming

First, initialize the best overall 
sublist x[left_idx: right_idx] and the 
left boundary for the best current 
sublist x[i: j]; implicitly, initially, j = 0

For each 0 ≤ j < n,

– determine the best sublist 
x[i: j+1] with boundary j+1

– update information on the 
best sublist found so far

return the best overall sublist
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def kadane_sublist(x):
    left_idx, right_idx = 0, 0
    max_sublist_sum = 0
    i = 0
    sublist_sum = 0

    for j in range(len(x)):
        sublist_sum += x[j]
        if sublist_sum < 0:
            i = j+1
            sublist_sum = 0
        elif sublist_sum > max_sublist_sum:
            left_idx, right_idx = i, j+1
            max_sublist_sum = sublist_sum

    return x[left_idx: right_idx]

Kadane’s algorithm for the maximum sublist sum

Remark

Kadane’s algorithm is a 
result of design by 

dynamic programming.

A partial solution is 
stored and and recalled, 
and the subproblems of 

the maximum sublist 
problem are overlapping.
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Divide-and-conquer vs. dynamic programming

Divide and conquer:

– The partial solutions (to subproblems) do not need to be remembered.
– Each partial solution is used only once, when it is combined with one or 

multiple other partial solutions in a single specific way.

Dynamic programming:

– Partial solutions are stored and recalled when required.

– Therefore, the same partial solution can be used multiple times, and it 
can be combined with other partial solutions in a variety of ways.
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Divide-and-conquer vs. dynamic programming

Divide and conquer:

– Subproblems do not overlap, there is a genuine split into subproblems.
– The partial solutions (to subproblems) do not need to be remembered.
– Each partial solution is used only once, when it is combined with one or 

multiple other partial solutions in a single specific way.

Dynamic programming:

– Partial solutions are stored and recalled when required.
– There is the option (and expectation) that subproblems overlap.
– Therefore, the same partial solution can be used multiple times, and it 

can be combined with other partial solutions in a variety of ways.
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Algorithm design strategies: Overview

Design strategies concern algorithm and code development at a more 
abstract level than that of its implementation. They are established approaches 
for designing algorithms; they all have their own strengths and weaknesses.

– Brute force: Check all possible solutions, determine the right/best one.
– Greedy algorithms: Build the solution step by step until it is complete.
– Decomposition by divide-and-conquer or by dynamic programming.

Brute force

Greedy 
algorithms

Decomposition
techniques

Easy to implement 
and to verify

Easy to implement, 
often very efficient

Powerful by reduction 
to subproblems

Scales with size of solution space, 
often forbiddingly expensive

Not all problems are accessible 
to this kind of approach

Requires a thorough analysis of 
the problem and its subproblems
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Static and
dynamic arrays
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Static arrays

An array contains a sequence of elements of the same type, arranged 
contiguously in memory.

In C/C++, the type of an array such as int[] is the same as the corresponding 
pointer type int*, i.e., the array actually is a pointer. Its value is an address at 
which an integer is stored, namely, the memory address of the first element.

34 1 7 12 3 4 7 12

x[0] x[1] x[2] x[3] x[4] x[5] x[6] x[7]
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Static arrays

An array contains a sequence of elements of the same type, arranged 
contiguously in memory. It is most common to work with static arrays.

In C/C++, the type of an array such as int[] is the same as the corresponding 
pointer type int*, i.e., the array actually is a pointer. Its value is an address at 
which an integer is stored, namely, the memory address of the first element.

34 1 7 12 3 4 7 12

x[0] x[1] x[2] x[3] x[4] x[5] x[6] x[7]

Remark

Static data structures can only change their content, i.e., the values of their 
elements. Once they are allocated, their size and structure cannot change.
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Static arrays

An array contains a sequence of elements of the same type, arranged 
contiguously in memory. This supports fast access using pointer arithmetics.

In C/C++, the type of an array such as int[] is the same as the corresponding 
pointer type int*, i.e., the array actually is a pointer. Its value is an address at 
which an integer is stored, namely, the memory address of the first element.

Above, *x would evaluate to 34, and so would x[0].
The expression *(x + 4) would evaluate to 4, and so would x[4].

34 1 7 12 3 4 7 12

x[0] x[1] x[2] x[3] x[4] x[5] x[6] x[7]

x = &(x[0]) x + 4 = &(x[4])
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Static arrays

An array contains a sequence of elements of the same type, arranged 
contiguously in memory. This supports fast access using pointer arithmetics.

In C/C++, the type of an array such as int[] is the same as the corresponding 
pointer type int*, i.e., the array actually is a pointer. Its value is an address at 
which an integer is stored, namely, the memory address of the first element.

This is highly efficient since when x[i] is accessed, the compiler transforms this 
into accessing the memory address x + sizeof(int) * i.

34 1 7 12 3 4 7 12

x[0] x[1] x[2] x[3] x[4] x[5] x[6] x[7]

x = &(x[0]) x + 3 = &(x[3]) x + 6 = &(x[6])



289th November 2021CO2412

Static arrays

34 1 7 12 3 4 7 12

x[0] x[1] x[2] x[3] x[4] x[5] x[6] x[7]

x = &(x[0]) x + 3 = &(x[3]) x + 6 = &(x[6])

Remark

In Python, numpy can be used to create an array, 
e.g., with x = np.array([34, 1, 7, 12, 3, 4, 7, 12]).

Efficiency analysis:

Read/write access to an array element: O(1) time.
Deleting an element from the array: Impossible.
Extending the array by an element: Impossible.



299th November 2021CO2412

Dynamic arrays

Conventional arrays are static data structures. Their size in memory is constant, 
and memory needs to be allocated only once, e.g., at declaration time. (Details 
depend on programming language, compiler, flags/optimziation level, etc.).

Dynamic data structures can change in size and/or structure at runtime. For an 
array, this can be implemented by allocating reserve memory for any elements 
that may be appended in the future.
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Dynamic arrays

Conventional arrays are static data structures. Their size in memory is constant, 
and memory needs to be allocated only once, e.g., at declaration time. (Details 
depend on programming language, compiler, flags/optimziation level, etc.).

Dynamic data structures can change in size and/or structure at runtime. For an 
array, this can be implemented by allocating reserve memory for any elements 
that may be appended in the future. When the capacity of the dynamic array is 
exhausted, all of its contents need to be shifted to another position in memory.

34 1 7 12

x[0] x[1] x[2] x[3]

4

x.length

x = [34, 1, 7, 12]

Note: More memory is allocated than strictly necessary.
Like before, the elements are contiguously arranged in memory.
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Dynamic arrays

Conventional arrays are static data structures. Their size in memory is constant, 
and memory needs to be allocated only once, e.g., at declaration time. (Details 
depend on programming language, compiler, flags/optimziation level, etc.).

Dynamic data structures can change in size and/or structure at runtime. For an 
array, this can be implemented by allocating reserve memory for any elements 
that may be appended in the future. When the capacity of the dynamic array is 
exhausted, all of its contents need to be shifted to another position in memory.

34 1 7 12

x[0] x[1] x[2] x[3]

4

x.length

x = [34, 1, 7, 12]

x.append(3)
x.append(4)

logical 
size is 4

free free

capacity is 6
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Dynamic arrays

Conventional arrays are static data structures. Their size in memory is constant, 
and memory needs to be allocated only once, e.g., at declaration time. (Details 
depend on programming language, compiler, flags/optimziation level, etc.).

Dynamic data structures can change in size and/or structure at runtime. For an 
array, this can be implemented by allocating reserve memory for any elements 
that may be appended in the future. When the capacity of the dynamic array is 
exhausted, all of its contents need to be shifted to another position in memory.

34 1 7 12 3 4

x[0] x[1] x[2] x[3] x[4] x[5]

6

x.length

x = [34, 1, 7, 12]

x.append(3)
x.append(4)
x.append(7)
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Dynamic arrays

Conventional arrays are static data structures. Their size in memory is constant, 
and memory needs to be allocated only once, e.g., at declaration time. (Details 
depend on programming language, compiler, flags/optimziation level, etc.).

Dynamic data structures can change in size and/or structure at runtime. For an 
array, this can be implemented by allocating reserve memory for any elements 
that may be appended in the future. When the capacity of the dynamic array is 
exhausted, all of its contents need to be shifted to another position in memory.

34 1 7 12 3 4

x[0] x[1] x[2] x[3] x[4] x[5]

7

x.length

x[6]

7 free free

Time: Copying O(n) elements + memory allocation effort
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Dynamic arrays: Efficiency analysis

– Read/write access to an array element: O(1) time.
Address of the i-th element computable by pointer arithmetics.

– Deleting an element from the array?

34 1 7 12 3 4

x[0] x[1] x[2] x[3] x[4] x[5]

7

x.length

x[6]

7 free free

x + 3 = &(x[3])
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Dynamic arrays: Efficiency analysis

– Read/write access to an array element: O(1) time.
Address of the i-th element computable by pointer arithmetics.

– Deleting an element from the array: O(1) at the end, O(n) elsewhere.
All the elements with greater indices need to be shifted.

– Extending the array by one element?

34 7 12 3 4

x[0] x[1]

6

x.length

7 free freefree

x[2] x[3] x[4] x[5]
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Dynamic arrays: Efficiency analysis

– Read/write access to an array element: O(1) time.
Address of the i-th element computable by pointer arithmetics.

– Deleting an element from the array: O(1) at the end, O(n) elsewhere.
All the elements with greater indices need to be shifted.

– Extending the array by one element: O(1) at the end, if there is capacity. 
O(n) elsewhere, or if the capacity of the dynamic array is exhausted.

34 7 12 3 4

x[0] x[1] x[2] x[3] x[4] x[5]

7

x.length

x[6]

7 freefree12
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Python lists and the
Tutorial 1.1 problem
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Python lists

Lists in Python are implemented as dynamic arrays. Their elements behave in 
the same way as Python variables do in general: For elementary data types 
such as numbers, they contain the value.

When a sublist x[i: j] is created from x, all the sublist elements are copied.
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Python lists

Lists in Python are implemented as dynamic arrays. Their elements behave in 
the same way as Python variables do in general: For elementary data types 
such as numbers, they contain the value.

When a sublist x[i: j] is created from x, all the sublist elements are copied.

This takes O(j – i) time and space; in typical cases, that is O(n).
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Python lists

Lists in Python are implemented as dynamic arrays. Their elements behave in 
the same way as Python variables do in general: For elementary data types 
such as numbers, they contain the value, otherwise they are object references.

When a sublist x[i: j] is created from x, all the sublist elements are copied.
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Python lists

Lists in Python are implemented as dynamic arrays. Their elements behave in 
the same way as Python variables do in general: For elementary data types 
such as numbers, they contain the value, otherwise they are object references.

When a sublist x[i: j] is created from x, all the sublist elements are copied.
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def selection_sort(x):
    for i in range(len(x)):

        min_idx = i
        for j in range(i+1, len(x)):
            if x[j] < x[min_idx]:
                min_idx = j

        next_element = x.pop(min_idx)
        x.insert(i, next_element)

Revisited: List operations used in selection sort

inserts next_element at list index i

the index of all the following 
elements increases by 1

removes the element at index 
next_element from the list, and 
returns its value

the index of all the following 
elements decreases by 1

[6, 8, 58, 25, 48, 19, 39, 76, 11, 86, 75]

[6, 8, 58, 25, 48, 19, 39, 76, 86, 75]

[6, 8, 11, 58, 25, 48, 19, 39, 76, 86, 75]

pop(8), which returns 11

insert(2, 11)
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def selection_sort(x):
    for i in range(len(x)):

        min_idx = i
        for j in range(i+1, len(x)):
            if x[j] < x[min_idx]:
                min_idx = j

        next_element = x.pop(min_idx)
        x.insert(i, next_element)

Revisited: List operations used in selection sort

inserts next_element at list index i

the index of all the following 
elements increases by 1

removes the element at index 
next_element from the list, and 
returns its value

the index of all the following 
elements decreases by 1

[6, 8, 58, 25, 48, 19, 39, 76, 11, 86, 75]

[6, 8, 58, 25, 48, 19, 39, 76, 86, 75]

[6, 8, 11, 58, 25, 48, 19, 39, 76, 86, 75]

pop(8), which returns 11

insert(2, 11)

These operations both take O(n) time 
except at the very end of the list.
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def kadane_sublist(x):
    left_idx, right_idx = 0, 0
    max_sublist_sum = 0
    i = 0
    sublist_sum = 0

    for j in range(len(x)):
        sublist_sum += x[j]
        if sublist_sum < 0:
            i = j+1
            sublist_sum = 0
        elif sublist_sum > max_sublist_sum:
            left_idx, right_idx = i, j+1
            max_sublist_sum = sublist_sum

    return x[left_idx: right_idx]

Revisited: Time efficiency of Kadane’s algorithm

Input size n given by len(x)

O(1) instructions

loop executed O(n) times
– O(1) instructions

– O(1) optional instructions

– O(1) optional instructions

???

O(n) time efficiency
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def kadane_sublist(x):
    left_idx, right_idx = 0, 0
    max_sublist_sum = 0
    i = 0
    sublist_sum = 0

    for j in range(len(x)):
        sublist_sum += x[j]
        if sublist_sum < 0:
            i = j+1
            sublist_sum = 0
        elif sublist_sum > max_sublist_sum:
            left_idx, right_idx = i, j+1
            max_sublist_sum = sublist_sum

    return x[left_idx: right_idx]

Revisited: Time efficiency of Kadane’s algorithm

Input size n given by len(x)

O(1) instructions

loop executed O(n) times
– O(1) instructions

– O(1) optional instructions

– O(1) optional instructions

O(n) instructions

O(n) time efficiency
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Maximum sublist sum algorithms: Performance

brute-force 
algorithm

Kadane’s 
algorithm

O(n) time efficiency

O(n3) time efficiency
note: logarithmic scale
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Maximum sublist sum algorithms: Performance

brute-force 
algorithm

Kadane’s 
algorithm

factor
1000

16 micro-
seconds

16 milliseconds

O(n) time efficiency

O(n3) time efficiency
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def kadane_sublist(x):
    left_idx, right_idx = 0, 0
    max_sublist_sum = 0
    i = 0
    sublist_sum = 0

    for j in range(len(x)):
        sublist_sum += x[j]
        if sublist_sum < 0:
            i = j+1
            sublist_sum = 0
        elif sublist_sum > max_sublist_sum:
            left_idx, right_idx = i, j+1
            max_sublist_sum = sublist_sum

    return x[left_idx: right_idx]

Space efficiency of Kadane’s algorithm in Python

Input size n given by len(x)

Five new variables

One loop index

???
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def kadane_sublist(x):
    left_idx, right_idx = 0, 0
    max_sublist_sum = 0
    i = 0
    sublist_sum = 0

    for j in range(len(x)):
        sublist_sum += x[j]
        if sublist_sum < 0:
            i = j+1
            sublist_sum = 0
        elif sublist_sum > max_sublist_sum:
            left_idx, right_idx = i, j+1
            max_sublist_sum = sublist_sum

    return x[left_idx: right_idx]

Space efficiency of Kadane’s algorithm in Python

Input size n given by len(x)

Five new variables

One loop index

New list with O(n) elements

O(n) space efficiency

Remark

Using data structures other 
than Python lists, this might 

be done in O(1) space.
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def max_iterative(listA):
    current_max_val = listA[0]
    for i in listA:
        if i > current_max_val:
            current_max_val = i
    return current_max_val
(by Chris Pickup)

Tutorial 1.1 problem: Return the maximum

fastest iterative code

def largestRecur(list, n):

    if n == 1:
        return list[n-1]
    else:
        previous = largestRecur(list, n-1)
        current = list[n-1]
        if previous > current:
            return previous
        else:
            return current
(by Sam Hardy)

fastest recursive code
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def max_iterative(listA):
    current_max_val = listA[0]
    for i in listA:
        if i > current_max_val:
            current_max_val = i
    return current_max_val
(by Chris Pickup)

Tutorial 1.1 problem: Return the maximum

fastest iterative code

def largestRecur(list, n):

    if n == 1:
        return list[n-1]
    else:
        previous = largestRecur(list, n-1)
        current = list[n-1]
        if previous > current:
            return previous
        else:
            return current
(by Sam Hardy)

fastest recursive code

Both implementations run in 
O(n) time. The iterative code 
is more efficient by a factor 7.
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Tutorial 1.1 problem: Return the maximum

O(n) recursive codeO(n2) recursive code

def largestRecur(list, n):

    if n == 1:
        return list[n-1]
    else:
        previous = largestRecur(list, n-1)
        current = list[n-1]
        if previous > current:
            return previous
        else:
            return current
(by Sam Hardy)

def largestRecur(list):
    n = len(list)
    if n == 1:
        return list[n-1]
    else:
        previous = largestRecur(list[0: n-1])
        current = list[n-1]
        if previous > current:
            return previous
        else:
            return current

Sublist creation takes O(n) time (and space)!
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