
Where opportunity creates success

CO2412
Computational Thinking
Algorithm design strategies: Overview
Dynamic programming
Static and dynamic arrays
Python lists and the Tutorial 1.1 problem

9th November 2021CO2412

Algorithm design
strategies: Overview

39th November 2021CO2412

Design strategy: Brute force

Initial analysis: What is the space of all conceivable solutions to the problem,
for the given input? Check all parameters/options and devise an scheme that
iterates over all the permitted values and their combinations.

Brute-force design strategy: Evaluate all potential solutions, one by one.

Strengths of the strategy: The code is easy to write, and it is easy to prove that
it is correct. Beyond the initial analysis, not much needs to be figured out.

Weakness of the strategy: Reusing information might reduce the relevant
number of candidate solutions. This is not done; instead, all are tried out.

While there are some problems that can be addressed in this way, most cannot;
the space of solutions that need to be enumerated usually grows too fast.

49th November 2021CO2412

Example problem: Maximum sublist sum

Specification of a function solving the maximum sublist sum problem

Precondition (of the function), i.e., initial execution state: One argument is
passed to the function, namely, a list of floating-point and/or integer numbers.

Postcondition (of the function), i.e., final execution state: The function returns a
sublist, i.e., a contiguous part of the original list, such that the sum over all
elements of the sublist is as large as possible.

Example: The list given by

x = [–147, 72, –49, 40, 46, 35, 26, –69, 21, –5, –52, –40, 6, –133, 36]

has the maximum sublist x[1: 7] = [72, –49, 40, 46, 35, 26] with the sum 170.

59th November 2021CO2412

def brute_force_sublist(x):
 left_idx, right_idx = 0, 0
 max_sublist_sum = 0
 for i in range(len(x)):
 for j in range(i+1, len(x)+1):
 sublist_sum = 0
 for k in range(i, j):
 sublist_sum += x[k]
 if sublist_sum > max_sublist_sum:
 left_idx = i
 right_idx = j
 max_sublist_sum = sublist_sum
 return x[left_idx: right_idx]

Brute-force maximum-sublist-sum algorithm

Summary:
– Try out all possible

sublists, with index i
running over all possible
left limits and j over all
right limits (greater than i)

– Evaluate the sum of the
elements of each sublist

– Keep track of the
maximum; finally, return
the maximum sublist

69th November 2021CO2412

Greedy algorithms are based on the idea of making the best local
improvement (i.e., the best immediately visible small change) to a partial
solution. They consider one candidate solution only and build it up gradually.

Design strategy: Greedy algorithms

Image source: BBC

Image source: City College Norwich

Strength: Systematic and
easy to implement.

Weakness: It does not solve all problems correctly; but even then, it might
return an acceptable suboptimal result or an approximation to the solution.

79th November 2021CO2412

def selection_sort(x):
 for i in range(len(x)):

 min_idx = i
 for j in range(i+1, len(x)):
 if x[j] < x[min_idx]:
 min_idx = j

 next_element = x.pop(min_idx)
 x.insert(i, next_element)

Selection sort (greedy)
Test list: [8, 58, 25, 48, 19, 39, 76, 6, 11, 86, 75]

Sorted part of the list:
[6]
Unsorted part of the list:
[8, 58, 25, 48, 19, 39, 76, 11, 86, 75]

Sorted part of the list:
[6, 8]
Unsorted part of the list:
[58, 25, 48, 19, 39, 76, 11, 86, 75]

...

Sorted part of the list:
[6, 8, 11, 19, 25, 39, 48, 58, 75]
Unsorted part of the list:
[76, 86]

Sorted part of the list:
[6, 8, 11, 19, 25, 39, 48, 58, 75, 76]
Unsorted part of the list:
[86]

Sorted part of the list:
[6, 8, 11, 19, 25, 39, 48, 58, 75, 76, 86]
Unsorted part of the list:
[]

all before index i is sorted

min_idx is the index of the smallest
element from the unsorted part

all until (including) index i is sorted

the whole list is sorted

89th November 2021CO2412

Decomposition breaks a problem down into smaller subtasks. For the two
decomposition techniques discussed today, divide-and-conquer and dynamic
programming, subtasks are subproblems: Smaller versions of the problem.

The solution of a subproblem then is a partial solution for the whole problem.

Design strategy: Divide and conquer

In divide-and-conquer, subproblems do not overlap (or they are assumed not
to overlap). Each subproblem occurs once, and hence, each partial solution is
used only once. It need not be stored anywhere beyond its single use.

k
< k First divide,

then conquer,

finally combine the results.

99th November 2021CO2412

Mergesort: Divide and conquer

List: [20, 22, 4, 89, 110, 52, 60, 79, 58, 9, 87]

Merging x[0:1] = [20] with x[1:2] = [22]
Merged to x[0:2] = [20, 22]

Merging x[2:3] = [4] with x[3:4] = [89]
Merged to x[2:4] = [4, 89]

Merging x[4:5] = [110] with x[5:6] = [52]
Merged to x[4:6] = [52, 110]

Merging x[6:7] = [60] with x[7:8] = [79]
Merged to x[6:8] = [60, 79]

Merging x[8:9] = [58] with x[9:10] = [9]
Merged to x[8:10] = [9, 58]

(Nothing to be done for x[10].)

20 22 4 89 110 52 60 79 58 9 87

20 22 4 89 110 52 60 79 58 9 87

20 22 4 89 110 52 60 79 58 9 87

20 22 4 89 110 52 60 79 58 9 87

20 22 4 89 110 52 60 79 58 9 87

20 22 4 89 52 110 60 79 58 9 87

20 22 4 89 52 110 60 79 58 9 87

20 22 4 89 52 110 60 79 58 9 87

20 22 4 89 52 110 60 79 58 9 87

20 22 4 89 52 110 60 79 9 58 87

20 22 4 89 52 110 60 79 9 58 87

sublist_size = 1

109th November 2021CO2412

Mergesort: Divide and conquer

Merging x[0:2] = [20, 22] with x[2:4] = [4, 89]
Merged to x[0:4] = [4, 20, 22, 89]

Merging x[4:6] = [52, 110] with x[6:8] = [60, 79]
Merged to x[4:8] = [52, 60, 79, 110]

Merging x[8:10] = [9, 58] with x[10:11] = [87]
Merged to x[8:11] = [9, 58, 87]

Merging x[0:4] = [4, …] with x[4:8] = [52, …]
Merged to x[0:8] = [4, …, 110]

(Nothing to be done for x[8:11].)

Merging x[0:8] = [4, …] with x[8:11] = [9, …]
Merged to x[0:11] = [4, …, 110]

20 22 4 89 52 110 60 79 9 58 87

4 20 22 89 52 110 60 79 9 58 87

4 20 22 89 52 110 60 79 9 58 87

4 20 22 89 52 60 79 110 9 58 87

4 20 22 89 52 60 79 110 9 58 87

4 20 22 89 52 60 79 110 9 58 87

4 20 22 89 52 60 79 110 9 58 87

4 20 22 52 60 79 89 100 9 58 87

4 20 22 52 60 79 89 100 9 58 87

4 20 22 52 60 79 89 100 9 58 87

4 9 20 22 52 58 60 79 87 89 100

sublist_size = 2

sublist_size = 4

sublist_size = 8

119th November 2021CO2412

Design strategies: Overview

Design strategies concern algorithm and code development at a more
abstract level than that of its implementation. They are established approaches
for designing algorithms; they all have their own strengths and weaknesses.

– Brute force: Check all possible solutions, determine the right/best one.
– Greedy algorithms: Build the solution step by step until it is complete.
– Decomposition by divide-and-conquer or by dynamic programming.

We have seen many algorithm design elements in use so far, including:

– Case distinctions
– Recursive function calls
– Nested loops
– Dynamic data structures (lists, dictionaries, etc.)

129th November 2021CO2412

Design strategies: Overview

Design strategies concern algorithm and code development at a more
abstract level than that of its implementation. They are established approaches
for designing algorithms; they all have their own strengths and weaknesses.

– Brute force: Check all possible solutions, determine the right/best one.
– Greedy algorithms: Build the solution step by step until it is complete.
– Decomposition by divide-and-conquer or by dynamic programming.

Brute force

Greedy
algorithms

Decomposition
techniques

Easy to implement
and to verify

Easy to implement,
often very efficient

Powerful by reduction
to subproblems

139th November 2021CO2412

Design strategies: Overview

Design strategies concern algorithm and code development at a more
abstract level than that of its implementation. They are established approaches
for designing algorithms; they all have their own strengths and weaknesses.

– Brute force: Check all possible solutions, determine the right/best one.
– Greedy algorithms: Build the solution step by step until it is complete.
– Decomposition by divide-and-conquer or by dynamic programming.

Brute force

Greedy
algorithms

Decomposition
techniques

Easy to implement
and to verify

Easy to implement,
often very efficient

Powerful by reduction
to subproblems

Scales with size of solution space,
often forbiddingly expensive

Not all problems are accessible
to this kind of approach

Requires a thorough analysis of
the problem and its subproblems

9th November 2021CO2412

Dynamic
programming

159th November 2021CO2412

Where the decomposition of a problem into smaller parts leads to mutually
overlapping subproblems, divide-and-conquer (e.g., implemented by
multiple recursion) might recompute the same partial solution many times.

Divide-and-conquer: Limitations

k – 1 k – 2

k – 2 k – 3 k – 3 k – 4

k

k – 3 k – 4 k – 4 k – 4 k – 5k – 5 k – 5 k – 6

Fibonacci sequence: First
attempt at decomposition.

F0 = 0

F1 = 1

Fk = Fk–1 + Fk–2 , for k > 1

0, 1, 1, 2, 3, 5, 8, 13, …

Fibonacci sequence

169th November 2021CO2412

Where the decomposition of a problem into smaller parts leads to mutually
overlapping subproblems, divide-and-conquer (e.g., implemented by
multiple recursion) might recompute the same partial solution many times.

Divide-and-conquer: Limitations

k – 1 k – 2

k – 2 k – 3 k – 3 k – 4

k

k – 3 k – 4 k – 4 k – 4 k – 5k – 5 k – 5 k – 6

Fibonacci sequence: First
attempt at decomposition.

F0 = 0

F1 = 1

Fk = Fk–1 + Fk–2 , for k > 1

0, 1, 1, 2, 3, 5, 8, 13, …

Fibonacci sequenceThe subproblems from the two
branches (for k – 1 and k – 2) overlap:
They both contain the k – 3 subproblem.

179th November 2021CO2412

Where the decomposition of a problem into smaller parts leads to mutually
overlapping subproblems, divide-and-conquer (e.g., implemented by
multiple recursion) might recompute the same partial solution many times.

To improve the decomposition efficiency in such cases, it can help to store
and recall partial solutions. This strategy is called dynamic programming.

Design strategy: Dynamic programming

k – 1 k – 2

k – 2 k – 3 k – 3 k – 4

k

k – 3 k – 4 k – 4 k – 4 k – 5k – 5 k – 5 k – 6

k – 1 k – 2

k – 2 k – 3

k

k – 3 k – 4

store and recall
partial solutions

Fibonacci sequence: First
attempt at decomposition.

Fibonacci sequence: O(n) time
solution by dynamic programming.

189th November 2021CO2412

def kadane_sublist(x):
 left_idx, right_idx = 0, 0
 max_sublist_sum = 0
 i = 0
 sublist_sum = 0

 for j in range(len(x)):
 sublist_sum += x[j]
 if sublist_sum < 0:
 i = j+1
 sublist_sum = 0
 elif sublist_sum > max_sublist_sum:
 left_idx, right_idx = i, j+1
 max_sublist_sum = sublist_sum

 return x[left_idx: right_idx]

Kadane’s algorithm: Dynamic programming

First, initialize the best overall
sublist x[left_idx: right_idx] and the
left boundary for the best current
sublist x[i: j]; implicitly, initially, j = 0

For each 0 ≤ j < n,

– determine the best sublist
x[i: j+1] with boundary j+1

– update information on the
best sublist found so far

return the best overall sublist

199th November 2021CO2412

def kadane_sublist(x):
 left_idx, right_idx = 0, 0
 max_sublist_sum = 0
 i = 0
 sublist_sum = 0

 for j in range(len(x)):
 sublist_sum += x[j]
 if sublist_sum < 0:
 i = j+1
 sublist_sum = 0
 elif sublist_sum > max_sublist_sum:
 left_idx, right_idx = i, j+1
 max_sublist_sum = sublist_sum

 return x[left_idx: right_idx]

Kadane’s algorithm for the maximum sublist sum

Remark

Kadane’s algorithm is a
result of design by

dynamic programming.

A partial solution is
stored and and recalled,
and the subproblems of

the maximum sublist
problem are overlapping.

209th November 2021CO2412

Divide-and-conquer vs. dynamic programming

Divide and conquer:

– The partial solutions (to subproblems) do not need to be remembered.
– Each partial solution is used only once, when it is combined with one or

multiple other partial solutions in a single specific way.

Dynamic programming:

– Partial solutions are stored and recalled when required.

– Therefore, the same partial solution can be used multiple times, and it
can be combined with other partial solutions in a variety of ways.

219th November 2021CO2412

Divide-and-conquer vs. dynamic programming

Divide and conquer:

– Subproblems do not overlap, there is a genuine split into subproblems.
– The partial solutions (to subproblems) do not need to be remembered.
– Each partial solution is used only once, when it is combined with one or

multiple other partial solutions in a single specific way.

Dynamic programming:

– Partial solutions are stored and recalled when required.
– There is the option (and expectation) that subproblems overlap.
– Therefore, the same partial solution can be used multiple times, and it

can be combined with other partial solutions in a variety of ways.

229th November 2021CO2412

Algorithm design strategies: Overview

Design strategies concern algorithm and code development at a more
abstract level than that of its implementation. They are established approaches
for designing algorithms; they all have their own strengths and weaknesses.

– Brute force: Check all possible solutions, determine the right/best one.
– Greedy algorithms: Build the solution step by step until it is complete.
– Decomposition by divide-and-conquer or by dynamic programming.

Brute force

Greedy
algorithms

Decomposition
techniques

Easy to implement
and to verify

Easy to implement,
often very efficient

Powerful by reduction
to subproblems

Scales with size of solution space,
often forbiddingly expensive

Not all problems are accessible
to this kind of approach

Requires a thorough analysis of
the problem and its subproblems

9th November 2021CO2412

Static and
dynamic arrays

249th November 2021CO2412

Static arrays

An array contains a sequence of elements of the same type, arranged
contiguously in memory.

In C/C++, the type of an array such as int[] is the same as the corresponding
pointer type int*, i.e., the array actually is a pointer. Its value is an address at
which an integer is stored, namely, the memory address of the first element.

34 1 7 12 3 4 7 12

x[0] x[1] x[2] x[3] x[4] x[5] x[6] x[7]

259th November 2021CO2412

Static arrays

An array contains a sequence of elements of the same type, arranged
contiguously in memory. It is most common to work with static arrays.

In C/C++, the type of an array such as int[] is the same as the corresponding
pointer type int*, i.e., the array actually is a pointer. Its value is an address at
which an integer is stored, namely, the memory address of the first element.

34 1 7 12 3 4 7 12

x[0] x[1] x[2] x[3] x[4] x[5] x[6] x[7]

Remark

Static data structures can only change their content, i.e., the values of their
elements. Once they are allocated, their size and structure cannot change.

269th November 2021CO2412

Static arrays

An array contains a sequence of elements of the same type, arranged
contiguously in memory. This supports fast access using pointer arithmetics.

In C/C++, the type of an array such as int[] is the same as the corresponding
pointer type int*, i.e., the array actually is a pointer. Its value is an address at
which an integer is stored, namely, the memory address of the first element.

Above, *x would evaluate to 34, and so would x[0].
The expression *(x + 4) would evaluate to 4, and so would x[4].

34 1 7 12 3 4 7 12

x[0] x[1] x[2] x[3] x[4] x[5] x[6] x[7]

x = &(x[0]) x + 4 = &(x[4])

279th November 2021CO2412

Static arrays

An array contains a sequence of elements of the same type, arranged
contiguously in memory. This supports fast access using pointer arithmetics.

In C/C++, the type of an array such as int[] is the same as the corresponding
pointer type int*, i.e., the array actually is a pointer. Its value is an address at
which an integer is stored, namely, the memory address of the first element.

This is highly efficient since when x[i] is accessed, the compiler transforms this
into accessing the memory address x + sizeof(int) * i.

34 1 7 12 3 4 7 12

x[0] x[1] x[2] x[3] x[4] x[5] x[6] x[7]

x = &(x[0]) x + 3 = &(x[3]) x + 6 = &(x[6])

289th November 2021CO2412

Static arrays

34 1 7 12 3 4 7 12

x[0] x[1] x[2] x[3] x[4] x[5] x[6] x[7]

x = &(x[0]) x + 3 = &(x[3]) x + 6 = &(x[6])

Remark

In Python, numpy can be used to create an array,
e.g., with x = np.array([34, 1, 7, 12, 3, 4, 7, 12]).

Efficiency analysis:

Read/write access to an array element: O(1) time.
Deleting an element from the array: Impossible.
Extending the array by an element: Impossible.

299th November 2021CO2412

Dynamic arrays

Conventional arrays are static data structures. Their size in memory is constant,
and memory needs to be allocated only once, e.g., at declaration time. (Details
depend on programming language, compiler, flags/optimziation level, etc.).

Dynamic data structures can change in size and/or structure at runtime. For an
array, this can be implemented by allocating reserve memory for any elements
that may be appended in the future.

309th November 2021CO2412

Dynamic arrays

Conventional arrays are static data structures. Their size in memory is constant,
and memory needs to be allocated only once, e.g., at declaration time. (Details
depend on programming language, compiler, flags/optimziation level, etc.).

Dynamic data structures can change in size and/or structure at runtime. For an
array, this can be implemented by allocating reserve memory for any elements
that may be appended in the future. When the capacity of the dynamic array is
exhausted, all of its contents need to be shifted to another position in memory.

34 1 7 12

x[0] x[1] x[2] x[3]

4

x.length

x = [34, 1, 7, 12]

Note: More memory is allocated than strictly necessary.
Like before, the elements are contiguously arranged in memory.

319th November 2021CO2412

Dynamic arrays

Conventional arrays are static data structures. Their size in memory is constant,
and memory needs to be allocated only once, e.g., at declaration time. (Details
depend on programming language, compiler, flags/optimziation level, etc.).

Dynamic data structures can change in size and/or structure at runtime. For an
array, this can be implemented by allocating reserve memory for any elements
that may be appended in the future. When the capacity of the dynamic array is
exhausted, all of its contents need to be shifted to another position in memory.

34 1 7 12

x[0] x[1] x[2] x[3]

4

x.length

x = [34, 1, 7, 12]

x.append(3)
x.append(4)

logical
size is 4

free free

capacity is 6

329th November 2021CO2412

Dynamic arrays

Conventional arrays are static data structures. Their size in memory is constant,
and memory needs to be allocated only once, e.g., at declaration time. (Details
depend on programming language, compiler, flags/optimziation level, etc.).

Dynamic data structures can change in size and/or structure at runtime. For an
array, this can be implemented by allocating reserve memory for any elements
that may be appended in the future. When the capacity of the dynamic array is
exhausted, all of its contents need to be shifted to another position in memory.

34 1 7 12 3 4

x[0] x[1] x[2] x[3] x[4] x[5]

6

x.length

x = [34, 1, 7, 12]

x.append(3)
x.append(4)
x.append(7)

339th November 2021CO2412

Dynamic arrays

Conventional arrays are static data structures. Their size in memory is constant,
and memory needs to be allocated only once, e.g., at declaration time. (Details
depend on programming language, compiler, flags/optimziation level, etc.).

Dynamic data structures can change in size and/or structure at runtime. For an
array, this can be implemented by allocating reserve memory for any elements
that may be appended in the future. When the capacity of the dynamic array is
exhausted, all of its contents need to be shifted to another position in memory.

34 1 7 12 3 4

x[0] x[1] x[2] x[3] x[4] x[5]

7

x.length

x[6]

7 free free

Time: Copying O(n) elements + memory allocation effort

349th November 2021CO2412

Dynamic arrays: Efficiency analysis

– Read/write access to an array element: O(1) time.
Address of the i-th element computable by pointer arithmetics.

– Deleting an element from the array?

34 1 7 12 3 4

x[0] x[1] x[2] x[3] x[4] x[5]

7

x.length

x[6]

7 free free

x + 3 = &(x[3])

359th November 2021CO2412

Dynamic arrays: Efficiency analysis

– Read/write access to an array element: O(1) time.
Address of the i-th element computable by pointer arithmetics.

– Deleting an element from the array: O(1) at the end, O(n) elsewhere.
All the elements with greater indices need to be shifted.

– Extending the array by one element?

34 7 12 3 4

x[0] x[1]

6

x.length

7 free freefree

x[2] x[3] x[4] x[5]

369th November 2021CO2412

Dynamic arrays: Efficiency analysis

– Read/write access to an array element: O(1) time.
Address of the i-th element computable by pointer arithmetics.

– Deleting an element from the array: O(1) at the end, O(n) elsewhere.
All the elements with greater indices need to be shifted.

– Extending the array by one element: O(1) at the end, if there is capacity.
O(n) elsewhere, or if the capacity of the dynamic array is exhausted.

34 7 12 3 4

x[0] x[1] x[2] x[3] x[4] x[5]

7

x.length

x[6]

7 freefree12

9th November 2021CO2412

Python lists and the
Tutorial 1.1 problem

389th November 2021CO2412

Python lists

Lists in Python are implemented as dynamic arrays. Their elements behave in
the same way as Python variables do in general: For elementary data types
such as numbers, they contain the value.

When a sublist x[i: j] is created from x, all the sublist elements are copied.

399th November 2021CO2412

Python lists

Lists in Python are implemented as dynamic arrays. Their elements behave in
the same way as Python variables do in general: For elementary data types
such as numbers, they contain the value.

When a sublist x[i: j] is created from x, all the sublist elements are copied.

This takes O(j – i) time and space; in typical cases, that is O(n).

409th November 2021CO2412

Python lists

Lists in Python are implemented as dynamic arrays. Their elements behave in
the same way as Python variables do in general: For elementary data types
such as numbers, they contain the value, otherwise they are object references.

When a sublist x[i: j] is created from x, all the sublist elements are copied.

419th November 2021CO2412

Python lists

Lists in Python are implemented as dynamic arrays. Their elements behave in
the same way as Python variables do in general: For elementary data types
such as numbers, they contain the value, otherwise they are object references.

When a sublist x[i: j] is created from x, all the sublist elements are copied.

429th November 2021CO2412

def selection_sort(x):
 for i in range(len(x)):

 min_idx = i
 for j in range(i+1, len(x)):
 if x[j] < x[min_idx]:
 min_idx = j

 next_element = x.pop(min_idx)
 x.insert(i, next_element)

Revisited: List operations used in selection sort

inserts next_element at list index i

the index of all the following
elements increases by 1

removes the element at index
next_element from the list, and
returns its value

the index of all the following
elements decreases by 1

[6, 8, 58, 25, 48, 19, 39, 76, 11, 86, 75]

[6, 8, 58, 25, 48, 19, 39, 76, 86, 75]

[6, 8, 11, 58, 25, 48, 19, 39, 76, 86, 75]

pop(8), which returns 11

insert(2, 11)

439th November 2021CO2412

def selection_sort(x):
 for i in range(len(x)):

 min_idx = i
 for j in range(i+1, len(x)):
 if x[j] < x[min_idx]:
 min_idx = j

 next_element = x.pop(min_idx)
 x.insert(i, next_element)

Revisited: List operations used in selection sort

inserts next_element at list index i

the index of all the following
elements increases by 1

removes the element at index
next_element from the list, and
returns its value

the index of all the following
elements decreases by 1

[6, 8, 58, 25, 48, 19, 39, 76, 11, 86, 75]

[6, 8, 58, 25, 48, 19, 39, 76, 86, 75]

[6, 8, 11, 58, 25, 48, 19, 39, 76, 86, 75]

pop(8), which returns 11

insert(2, 11)

These operations both take O(n) time
except at the very end of the list.

449th November 2021CO2412

def kadane_sublist(x):
 left_idx, right_idx = 0, 0
 max_sublist_sum = 0
 i = 0
 sublist_sum = 0

 for j in range(len(x)):
 sublist_sum += x[j]
 if sublist_sum < 0:
 i = j+1
 sublist_sum = 0
 elif sublist_sum > max_sublist_sum:
 left_idx, right_idx = i, j+1
 max_sublist_sum = sublist_sum

 return x[left_idx: right_idx]

Revisited: Time efficiency of Kadane’s algorithm

Input size n given by len(x)

O(1) instructions

loop executed O(n) times
– O(1) instructions

– O(1) optional instructions

– O(1) optional instructions

???

O(n) time efficiency

459th November 2021CO2412

def kadane_sublist(x):
 left_idx, right_idx = 0, 0
 max_sublist_sum = 0
 i = 0
 sublist_sum = 0

 for j in range(len(x)):
 sublist_sum += x[j]
 if sublist_sum < 0:
 i = j+1
 sublist_sum = 0
 elif sublist_sum > max_sublist_sum:
 left_idx, right_idx = i, j+1
 max_sublist_sum = sublist_sum

 return x[left_idx: right_idx]

Revisited: Time efficiency of Kadane’s algorithm

Input size n given by len(x)

O(1) instructions

loop executed O(n) times
– O(1) instructions

– O(1) optional instructions

– O(1) optional instructions

O(n) instructions

O(n) time efficiency

469th November 2021CO2412

Maximum sublist sum algorithms: Performance

brute-force
algorithm

Kadane’s
algorithm

O(n) time efficiency

O(n3) time efficiency
note: logarithmic scale

479th November 2021CO2412

Maximum sublist sum algorithms: Performance

brute-force
algorithm

Kadane’s
algorithm

factor
1000

16 micro-
seconds

16 milliseconds

O(n) time efficiency

O(n3) time efficiency

489th November 2021CO2412

def kadane_sublist(x):
 left_idx, right_idx = 0, 0
 max_sublist_sum = 0
 i = 0
 sublist_sum = 0

 for j in range(len(x)):
 sublist_sum += x[j]
 if sublist_sum < 0:
 i = j+1
 sublist_sum = 0
 elif sublist_sum > max_sublist_sum:
 left_idx, right_idx = i, j+1
 max_sublist_sum = sublist_sum

 return x[left_idx: right_idx]

Space efficiency of Kadane’s algorithm in Python

Input size n given by len(x)

Five new variables

One loop index

???

499th November 2021CO2412

def kadane_sublist(x):
 left_idx, right_idx = 0, 0
 max_sublist_sum = 0
 i = 0
 sublist_sum = 0

 for j in range(len(x)):
 sublist_sum += x[j]
 if sublist_sum < 0:
 i = j+1
 sublist_sum = 0
 elif sublist_sum > max_sublist_sum:
 left_idx, right_idx = i, j+1
 max_sublist_sum = sublist_sum

 return x[left_idx: right_idx]

Space efficiency of Kadane’s algorithm in Python

Input size n given by len(x)

Five new variables

One loop index

New list with O(n) elements

O(n) space efficiency

Remark

Using data structures other
than Python lists, this might

be done in O(1) space.

509th November 2021CO2412

def max_iterative(listA):
 current_max_val = listA[0]
 for i in listA:
 if i > current_max_val:
 current_max_val = i
 return current_max_val
(by Chris Pickup)

Tutorial 1.1 problem: Return the maximum

fastest iterative code

def largestRecur(list, n):

 if n == 1:
 return list[n-1]
 else:
 previous = largestRecur(list, n-1)
 current = list[n-1]
 if previous > current:
 return previous
 else:
 return current
(by Sam Hardy)

fastest recursive code

519th November 2021CO2412

def max_iterative(listA):
 current_max_val = listA[0]
 for i in listA:
 if i > current_max_val:
 current_max_val = i
 return current_max_val
(by Chris Pickup)

Tutorial 1.1 problem: Return the maximum

fastest iterative code

def largestRecur(list, n):

 if n == 1:
 return list[n-1]
 else:
 previous = largestRecur(list, n-1)
 current = list[n-1]
 if previous > current:
 return previous
 else:
 return current
(by Sam Hardy)

fastest recursive code

Both implementations run in
O(n) time. The iterative code
is more efficient by a factor 7.

529th November 2021CO2412

Tutorial 1.1 problem: Return the maximum

O(n) recursive codeO(n2) recursive code

def largestRecur(list, n):

 if n == 1:
 return list[n-1]
 else:
 previous = largestRecur(list, n-1)
 current = list[n-1]
 if previous > current:
 return previous
 else:
 return current
(by Sam Hardy)

def largestRecur(list):
 n = len(list)
 if n == 1:
 return list[n-1]
 else:
 previous = largestRecur(list[0: n-1])
 current = list[n-1]
 if previous > current:
 return previous
 else:
 return current

Sublist creation takes O(n) time (and space)!

Where opportunity creates success

CO2412
Computational Thinking
Algorithm design strategies: Overview
Dynamic programming
Static and dynamic arrays
Python lists and the Tutorial 1.1 problem

