
Where opportunity creates success

CO2412
Computational Thinking

Tutorial 1.2 problem
List-like data structures
Python implementation

16th November 2021CO2412

Tutorial 1.2 problem

316th November 2021CO2412

Iterative computation of Fibonacci numbers

def fibonacci_iter(n):
 fibo = [0, 1]
 for k in range(2, n+1):
 fibo.append(fibo[k-1] + fibo[k-2])
 return fibo[n]

fibo = [0, 1]

loop

return fibo[n]

416th November 2021CO2412

Iterative computation of Fibonacci numbers

def fibonacci_iter(n):
 fibo = [0, 1]
 for k in range(2, n+1):
 fibo.append(fibo[k-1] + fibo[k-2])
 return fibo[n]

fibo = [0, 1]

for k in range(2, n+1):

fibo.append(fibo[k-1] + fibo[k-2])

return fibo[n]

next

end

516th November 2021CO2412

Iterative computation of Fibonacci numbers

def fibonacci_iter(n):
 fibo = [0, 1]
 for k in range(2, n+1):
 fibo.append(fibo[k-1] + fibo[k-2])
 return fibo[n]

fibo = [0, 1]

for k in range(2, n+1):

fibo.append(fibo[k-1] + fibo[k-2])

return fibo[n]

next

end

initial state S0

S1

S2

S3

S4

final
state S5

What do we want to prove about this code?

… that the nth Fibonacci number is computed
correctly. Our analysis must focus on this.

616th November 2021CO2412

Execution states: First iteration

fibo = [0, 1]

for k in range(2, n+1):

fibo.append(fibo[k-1] + fibo[k-2])

return fibo[n]

next

end

initial state S0

S1

S2

S3

S4

final
state S5

What do we want to prove about this code?

… that the nth Fibonacci number is computed
correctly. Our analysis must focus on this.

S0: n is a natural number or 0.

S1: as above; also, fibo is [0, 1]; that is,
 fibo[0] and fibo[1] contain F0 and F1

S2: k ≡ 2 and n ≥ 2;
 fibo contains F0 and F1

716th November 2021CO2412

Execution states: First iteration

fibo = [0, 1]

for k in range(2, n+1):

fibo.append(fibo[k-1] + fibo[k-2])

return fibo[n]

next

end

initial state S0

S1

S2

S3

S4

final
state S5

S0: n is a natural number or 0.

S1: as above; also, fibo is [0, 1]; that is,
 fibo[0] and fibo[1] contain F0 and F1

S2: k ≡ 2 and n ≥ 2;
 fibo contains F0 and F1

S3: k ≡ 2 and n ≥ 2;
 fibo contains F0, F1, and F2

816th November 2021CO2412

Execution states: Loop invariants

fibo = [0, 1]

for k in range(2, n+1):

fibo.append(fibo[k-1] + fibo[k-2])

return fibo[n]

next

end

initial state S0

S1

S2

S3

S4

final
state S5

S0: n is a natural number or 0.

S1: as above; also, fibo is [0, 1]; that is,
 fibo[0] and fibo[1] contain F0 and F1

S2: 2 ≤ k ≤ n;
 fibo contains F0 , F1, …, Fk –1

S3: 2 ≤ k ≤ n;
 fibo contains F0 , F1, …, Fk –1, Fk

Is it true the first time? Yes.

If true in one iteration, is it true in the next one? Yes.

916th November 2021CO2412

Execution states and proof of correctness

fibo = [0, 1]

for k in range(2, n+1):

fibo.append(fibo[k-1] + fibo[k-2])

return fibo[n]

next

end

initial state S0

S1

S2

S3

S4

final
state S5

S0: n is a natural number or 0.

S1: as above; also, fibo is [0, 1]; that is,
 fibo[0] and fibo[1] contain F0 and F1

S2: 2 ≤ k ≤ n;
 fibo contains F0 , F1, …, Fk –1

S3: 2 ≤ k ≤ n;
 fibo contains F0 , F1, …, Fk –1, Fk

S4: fibo contains F0, …, Fm where m is max(n, 1);
 in particular, fibo[n] is the n’th Fibonacci no.

S5: the n’th Fibonacci no. was returned

1016th November 2021CO2412

Fibonacci code: Space efficiency

fibo = [0, 1]

for k in range(2, n+1):

fibo.append(fibo[k-1] + fibo[k-2])

return fibo[n]

next

end

initial state S0

S1

S2

S3

S4

final
state S5

S4: fibo contains F0, …, Fm where m is max(n, 1);
 in particular, fibo[n] is the n’th Fibonacci no.

def fibonacci_iter(n):
 fibo = [0, 1]
 for k in range(2, n+1):
 fibo.append(fibo[k-1] \
 + fibo[k-2])
 return fibo[n]

List size: O(n)

1116th November 2021CO2412

Fibonacci code: Memory optimization

S4: fibo contains F0, …, Fm where m is max(n, 1);
 in particular, fibo[n] is the n’th Fibonacci no.

def fibonacci_iter(n):
 fibo = [0, 1]
 for k in range(2, n+1):
 fibo.append(fibo[k-1] \
 + fibo[k-2])
 return fibo[n]

List size: O(n)

def fibonacci_iter(n):
 if n == 0:
 return 0
 F_k_minus_one, F_k = 0, 1 # k = 1
 for k in range(2, n+1):
 F_k_minus_two = F_k_minus_one
 F_k_minus_one = F_k
 F_k = F_k_minus_one \
 + F_k_minus_two
 return F_k # k = n

1216th November 2021CO2412

Fibonacci code: Memory optimization

S4: fibo contains F0, …, Fm where m is max(n, 1);
 in particular, fibo[n] is the n’th Fibonacci no.

def fibonacci_iter(n):
 fibo = [0, 1]
 for k in range(2, n+1):
 fibo.append(fibo[k-1] \
 + fibo[k-2])
 return fibo[n]

List size: O(n)

def fibonacci_iter(n):
 if n == 0:
 return 0
 F_k_minus_one, F_k = 0, 1 # k = 1
 for k in range(2, n+1):
 F_k_minus_two = F_k_minus_one
 F_k_minus_one = F_k
 F_k = F_k_minus_one \
 + F_k_minus_two
 return F_k # k = n

O(n) space code O(1) space code

constant number of
elementary variables

O(1) space

16th November 2021CO2412

List-like data
structures

1416th November 2021CO2412

Dynamic arrays

Lists in Python are implemented as dynamic arrays. Their elements behave in
the same way as Python variables do in general: For elementary data types
such as numbers, they contain the value, otherwise they are object references.

When a sublist such as x[2: 4] is created from x, the sublist elements are copied.

1516th November 2021CO2412

Dynamic arrays

Dynamic data structures can change in size and/or structure at runtime. For an
array, this can be implemented by allocating reserve memory for any elements
that may be appended in the future. When the capacity of the dynamic array is
exhausted, all of its contents need to be shifted to another position in memory.

7

x.length logical
size is 4

An array contains a sequence of elements of the same type, arranged
contiguously in memory. The compiler/interpreter, and in some languages the
programmer, can use pointer arithmetics for converting indices to addresses.

34 1 7 12 3 4

x[0] x[1] x[2] x[3] x[4] x[5] x[6]

7 free free

capacity is 9

1616th November 2021CO2412

Dynamic arrays: Efficiency analysis

– Read/write access to an array element: O(1) time.
Address of the i-th element computable by pointer arithmetics.

34 1 7 12 3 4

x[0] x[1] x[2] x[3] x[4] x[5]

7

x.length

x[6]

7 free free

x + 3 = &(x[3])

An array contains a sequence of elements of the same type, arranged
contiguously in memory. The compiler/interpreter, and in some languages the
programmer, can use pointer arithmetics for converting indices to addresses.

1716th November 2021CO2412

Dynamic arrays: Efficiency analysis

– Read/write access to an array element: O(1) time.
Address of the i-th element computable by pointer arithmetics.

– Deleting an element from the array? O(1) at the end, O(n) elsewhere.
All the elements with greater indices need to be shifted.

34 1 7 12 3 4

x[0] x[1] x[2] x[3] x[4] x[5]

7

x.length

x[6]

7 free free

x + 3 = &(x[3])

1816th November 2021CO2412

Dynamic arrays: Efficiency analysis

– Read/write access to an array element: O(1) time.
Address of the i-th element computable by pointer arithmetics.

– Deleting an element from the array: O(1) at the end, O(n) elsewhere.
All the elements with greater indices need to be shifted.

– Extending the array by one element? O(1) at the end, if there is capacity.
O(n) elsewhere, or if the capacity of the dynamic array is exhausted.

34 7 12 3 4

x[0] x[1]

6

x.length

7 free freefree

x[2] x[3] x[4] x[5]

appending an element
will take constant time,

as long as there is capacity

1916th November 2021CO2412

Linked lists

Linked lists are dynamic data structures.

They differ from dynamic arrays in that their elements are not contiguous in
memory. Therefore, pointer increments (e.g., p++ as it would be in C/C++)
cannot be used to proceed from one data item (element) to the next.

Instead, the linked list consists of nodes.

34 1 7

Node Node Node
head (first node) tail (last node)

2016th November 2021CO2412

Linked lists

Linked lists are dynamic data structures.

They differ from dynamic arrays in that their elements are not contiguous in
memory. Therefore, pointer increments (e.g., p++ as it would be in C/C++)
cannot be used to proceed from one data item (element) to the next.

Instead, the linked list consists of nodes.

34 1 7 None

Node Node Node
head (first node) tail (last node)

the last node points to
None (Python) or null (C/C++)
as a non-existent “next node”

we must know where the
list begins; a reference to

the head is needed

2116th November 2021CO2412

Linked lists

Linked lists are dynamic data structures.

They differ from dynamic arrays in that their elements are not contiguous in
memory. Therefore, pointer increments (e.g., p++ as it would be in C/C++)
cannot be used to proceed from one data item (element) to the next.

Instead, the linked list consists of nodes, where each item is combined with a
link (i.e., a pointer in C/C++, an object reference in Python) to the next node.
When this is all that is provided, the data structure is called a singly linked list.

head

34 1 7

item next item next item next

None

2216th November 2021CO2412

Linked lists

The list contains a reference to its head, and may also contain one to its tail.

Linked lists differ from dynamic arrays in that their elements are not contiguous
in memory. Therefore, pointer increments (e.g., p++ as it would be in C/C++)
cannot be used to proceed from one data item (element) to the next.

Instead, the linked list consists of nodes, where each item is combined with a
link (i.e., a pointer in C/C++, an object reference in Python) to the next node.
When this is all that is provided, the data structure is called a singly linked list.

head

34 1 7

item next item next item next

None

tail

2316th November 2021CO2412

Singly linked lists: Inserting an element

If a reference to a node is given, another item can be inserted after that node
in constant time; by accessing the linked-list object, it takes constant time to
insert a new head at the beginning (push) or a new tail at the end (append).

Walking n elements forward and doing an insertion there takes O(n) time.

34

item next

1

item next

7

item next

head tail

None

2416th November 2021CO2412

Singly linked lists: Inserting an element

If a reference to a node is given, another item can be inserted after that node
in constant time; by accessing the linked-list object, it takes constant time to
insert a new head at the beginning (push) or a new tail at the end (append).

Example: Insert 12 after node x, to which we already have a reference.

34

item next

1

item next

7

item next

head tail

None

12

item next

node x

2516th November 2021CO2412

Singly linked lists: Deleting an element

If a reference to a node is given, deleting the subsequent node from the list
takes constant time; by accessing the linked-list object, it takes constant time
to remove and return the head item (pop operation in a stack data structure).

Walking n elements forward and doing an deletion there takes O(n) time.

34

1

item next

7

item next

head tail

None

12

item next
return 34

2616th November 2021CO2412

Singly linked lists: Summary

In a singly linked list, nodes contain references (pointers) to the next node.
This makes it possible to iterate forward in constant time, but not backward.
Insertion/deletion after a given element (not before it!) takes constant time.

Recall that for dynamic arrays, general insertion/deletion takes O(n) time.

1

item next

12

item next

7

item next

head tail

None

2716th November 2021CO2412

Doubly linked lists

In a doubly linked list, each node also contains a reference (or pointer) to the
previous node. This facilitates traversal in both directions and inserting a new
data item before any given node (rather than only after it), all in constant time.

Singly linked lists require two variables per data item (item and next).
Doubly linked lists require three variables per data item (prev, item, and next).

1

item nextprev

12

item nextprev

7

item nextprev

head tail

None
None

2816th November 2021CO2412

Summary: Efficiency analysis

– Read/write access to a data item at position k
• For a dynamic array, O(1) time; fast access by pointer arithmetics
• For a singly linked list, O(k) time, i.e., O(n) in the average/worst case

– Iterating over the data, i.e., proceeding from one item to the next one
• O(1) both for dynamic arrays and for linked lists;

in a singly linked list, this is limited to one direction, forward

– Deleting a data item at position k
• For a dynamic array, O(1) at the end, O(n – k) in general
• For a singly linked list, O(1) at the head, or if we have a reference to the

element at position k–1; otherwise, in general, O(k)

Above, n is the length (logical size) of the dynamic array or linked list.

Remark: For dynamic arrays, lookup and jumping to an index are in O(1). It is
only rearranging the elements in memory that, in general, can take linear time.

2916th November 2021CO2412

Summary: Efficiency analysis

– Read/write access to a data item at position k
• For a dynamic array, O(1) time; fast access by pointer arithmetics
• For a singly linked list, O(k) time, i.e., O(n) in the average/worst case
• For a doubly linked list, O(min(k, n – k)), which is still effectively O(n)

– Iterating over the data, i.e., proceeding from one item to the next one
• O(1) both for dynamic arrays and for linked lists

– Deleting a data item at position k
• For a dynamic array, O(1) at the end, O(n – k) in general
• For a singly linked list, O(1) at the head, or if we have a reference to the

element at position k–1; otherwise, in general, O(k)
• For a doubly linked list, O(1) at the head or tail, or if we have a

reference to that region of the list; in general, O(min(k, n – k))

Remark: For linked lists, insertion/deletion as such takes constant time, once
the node has been localized. However, getting to the node can take O(n) time.

3016th November 2021CO2412

Summary: Efficiency analysis

– Read/write access to a data item at position k
• For a dynamic array, O(1) time; fast access by pointer arithmetics
• For a singly linked list, O(k) time, i.e., O(n) in the average/worst case
• For a doubly linked list, O(min(k, n – k)), which is still effectively O(n)

– Iterating over the data, i.e., proceeding from one item to the next one
• O(1) both for dynamic arrays and for linked lists

– Inserting an additional data item at position k
• For a dynamic array, O(n) in the worst case, i.e., whenever the capacity

is exhausted; with free capacity, O(1) at the end, O(n – k) elsewhere
• For a singly linked list, O(1) at the head or tail, or if we have a reference

to the element at position k–1; Otherwise, in general, O(k)
• For a doubly linked list, O(1) at the head or tail, or if we have a

reference to that region of the list; in general, O(min(k, n – k))

3116th November 2021CO2412

Application: Stacks and queues

– Stacks function by the principle “last in, first out” (LIFO)

• Can be implemented using a singly linked list:
» Attach (push) new elements at the head of the list only
» Detach (pop) elements from the head of the list only

– Queues function by the principle “first in, first out” (FIFO)

• Can be implemented using a singly linked list (with a tail reference):
» Attach (push) new elements at the tail of the list only
» Detach (pop) elements from the head of the list only

All these operations can be carried out in constant time.

3216th November 2021CO2412

Application: Stacks and queues

– Stacks function by the principle “last in, first out” (LIFO)

• Can be implemented using a singly linked list:
» Attach (push) new elements at the head of the list only
» Detach (pop) elements from the head of the list only

• Can be implemented using a dynamic array:
» Attach (push) new elements at the end of the array only
» Detach (pop) elements from the end of the array only

– Queues function by the principle “first in, first out” (FIFO)

• Can be implemented using a singly linked list (with a tail reference):
» Attach (push) new elements at the tail of the list only
» Detach (pop) elements from the head of the list only

All these operations can be carried out in constant time;
in case of the push operation for the dynamic array, subject to free capacity.

16th November 2021CO2412

Python
implementation

See “linked_list” Jupyter Notebook example

3416th November 2021CO2412

Implementing data structures as Python classes

For implementing data structures (one of the main learning outcomes from
this module), it is usually helpful to rely on object-oriented programming.

In comparison to OOP syntax from other programming languages, Python
syntax is analogous in many ways. Major differences to C++ include:

– Object variables are object references, behaving similar to pointers.

– The argument “self” (analogous to “this” in C++) needs to be
mentioned as the first argument in each method definition.

– There are no private properties and methods – all is public. You are
advised to begin names with an underscore if they are for internal use.

See https://docs.python.org/3/tutorial/classes.html

3516th November 2021CO2412

Performance of linked lists vs. dynamic arrays

Python lists (dynamic arrays) are very efficient for many purposes.

However, deletions and insertions anywhere except at the very end are
handled inefficiently, compared to linked lists. In the linked_list Jupyter
Notebook, this is demonstrated by the following example task:

A list with n elements is given. Iterate over the whole list, and for each element:

– If it is a multiple of 3, delete it from the list;
– If it has a remainder of 1 upon division by three, do nothing;
– If it has a remainder of 2, insert a copy of the element right next to it.

See “linked_list” Jupyter Notebook example

In this way, e.g., [19, 12, 20, 12, 4] is modified to become [19, 20, 20, 4].

3616th November 2021CO2412

Performance of linked lists vs. dynamic arrays

linked list

Python lis
t

16th November 2021CO2412

Glossary

3816th November 2021CO2412

Glossary

From your point of view:

– What are the most important new concepts that were discussed?

– What essential terms have we been using without a clear definition?

– What concepts have we been using with different meanings in
different contexts, so that a clarification would be helpful?

– Has there been any unexplained jargon or technical terminology?

Any such expressions would be suitable for the glossary.

Suggestions are welcome at any time, particularly now, right after the lecture.

Where opportunity creates success

CO2412
Computational Thinking

Tutorial 1.2 problem
List-like data structures
Python implementation

