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Dynamic arrays: Efficiency analysis

– Read/write access to an array element: O(1) time.
Address of the i-th element computable by pointer arithmetics.

– Deleting an element from the array: O(1) at the end, O(n) elsewhere.
All the elements with greater indices need to be shifted.

– Extending the array by one element? O(1) at the end, if there is capacity. 
O(n) elsewhere, or if the capacity of the dynamic array is exhausted.

34 7 12 3 4

x[0] x[1]

6

x.length

7 free freefree

x[2] x[3] x[4] x[5]

appending an element
will take constant time,

as long as there is capacity



423rd November 2021CO2412

Singly linked lists

If a reference to a node is given, another item can be inserted after that node 
in constant time; by accessing the linked-list object, it takes constant time to 
insert a new head at the beginning (push) or a new tail at the end (append).

Example: Insert 12 after node x, to which we already have a reference.
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Doubly linked lists

In a doubly linked list, each node also contains a reference (or pointer) to the 
previous node. This facilitates traversal in both directions and inserting a new 
data item before any given node (rather than only after it), all in constant time.

Singly linked lists require two variables per data item (item and next).
Doubly linked lists require three variables per data item (prev, item, and next).
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Mod-3 copying performance comparison

For technical implementation details 
from last week’s tutorial, see the 
doubly-linked-list Jupyter Notebook.

Python lis
t

singly linked list

doubly linked list
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Summary: Efficiency analysis

– Read/write access to a data item at position k
• For a dynamic array, O(1) time; fast access by pointer arithmetics
• For a singly linked list, O(k) time, i.e., O(n) in the average/worst case

– Iterating over the data, i.e., proceeding from one item to the next one
• O(1) both for dynamic arrays and for linked lists;

in a singly linked list, this is limited to one direction, forward

– Deleting a data item at position k
• For a dynamic array, O(1) at the end, O(n – k) in general
• For a singly linked list, O(1) at the head, or if we have a reference to the 

element at position k–1; otherwise, in general, O(k)

Above, n is the length (logical size) of the dynamic array or linked list.

Remark: For dynamic arrays, lookup and jumping to an index are in O(1). It is 
only rearranging the elements in memory that, in general, can take linear time.
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Summary: Efficiency analysis

– Read/write access to a data item at position k
• For a dynamic array, O(1) time; fast access by pointer arithmetics
• For a singly linked list, O(k) time, i.e., O(n) in the average/worst case
• For a doubly linked list, O(min(k, n – k)), which is still effectively O(n)

– Iterating over the data, i.e., proceeding from one item to the next one
• O(1) both for dynamic arrays and for linked lists

– Deleting a data item at position k
• For a dynamic array, O(1) at the end, O(n – k) in general
• For a singly linked list, O(1) at the head, or if we have a reference to the 

element at position k–1; otherwise, in general, O(k)
• For a doubly linked list, O(1) at the head or tail, or if we have a 

reference to that region of the list; in general, O(min(k, n – k))

Remark: For linked lists, insertion/deletion as such takes constant time, once 
the node has been localized. However, getting to the node can take O(n) time.
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Summary: Efficiency analysis

– Read/write access to a data item at position k
• For a dynamic array, O(1) time; fast access by pointer arithmetics
• For a singly linked list, O(k) time, i.e., O(n) in the average/worst case
• For a doubly linked list, O(min(k, n – k)), which is still effectively O(n)

– Iterating over the data, i.e., proceeding from one item to the next one
• O(1) both for dynamic arrays and for linked lists

– Inserting an additional data item at position k
• For a dynamic array, O(n) in the worst case, i.e., whenever the capacity 

is exhausted; with free capacity, O(1) at the end, O(n – k) elsewhere
• For a singly linked list, O(1) at the head or tail, or if we have a reference 

to the element at position k–1; Otherwise, in general, O(k)
• For a doubly linked list, O(1) at the head or tail, or if we have a 

reference to that region of the list; in general, O(min(k, n – k))
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Application: Stacks and queues

– Stacks function by the principle “last in, first out” (LIFO)

• Can be implemented using a singly linked list:
» Attach (push) new elements at the head of the list only
» Detach (pop) elements from the head of the list only

• Can be implemented using a dynamic array:
» Attach (push) new elements at the end of the array only
» Detach (pop) elements from the end of the array only

– Queues function by the principle “first in, first out” (FIFO)

• Can be implemented using a singly linked list (with a tail reference):
» Attach (push) new elements at the tail of the list only
» Detach (pop) elements from the head of the list only

All these operations can be carried out in constant time;
in case of the push operation for the dynamic array, subject to free capacity.
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Sorting: Overview
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Sorting: Overview

For sorting, we have so far compared:
– Selection sort, a greedy algorithm with O(n2) time efficiency
– Mergesort, a divide-and-conquer algorithm with O(n log n) efficiency

By a statistical argument it can be proven that O(n log n) is the best 
theoretically possible efficiency of a sorting algorithm, i.e., it the time 
complexity of the sorting problem is O(n log n).
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Sorting: Overview

For sorting, we have so far compared:
– Selection sort, a greedy algorithm with O(n2) time efficiency
– Mergesort, a divide-and-conquer algorithm with O(n log n) efficiency

By a statistical argument it can be proven that O(n log n) is the best 
theoretically possible efficiency of a sorting algorithm, i.e., it the time 
complexity of the sorting problem is O(n log n).

Rough summary of the argument:
– For a list with n elements, there are n · n–1 · … = n! permutations, i.e., 

possible ways in which the list may need to be rearranged.
– Which of these permutations is correct can only be determined by 

comparing elements.
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Sorting: Overview

For sorting, we have so far compared:
– Selection sort, a greedy algorithm with O(n2) time efficiency
– Mergesort, a divide-and-conquer algorithm with O(n log n) efficiency

By a statistical argument it can be proven that O(n log n) is the best 
theoretically possible efficiency of a sorting algorithm, i.e., it the time 
complexity of the sorting problem is O(n log n).

Rough summary of the argument:
– For a list with n elements, there are n · n–1 · … = n! permutations, i.e., 

possible ways in which the list may need to be rearranged.
– Which of these permutations is correct can only be determined by 

comparing elements. With each comparison operation, which returns 
True or False, we can at best distinguish between two options.
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Sorting: Overview

For sorting, we have so far compared:
– Selection sort, a greedy algorithm with O(n2) time efficiency
– Mergesort, a divide-and-conquer algorithm with O(n log n) efficiency

Rough summary of the argument:
– For a list with n elements, there are n · n–1 · … = n! permutations, i.e., 

possible ways in which the list may need to be rearranged.
– Which of these permutations is correct can only be determined by 

comparing elements. With each comparison operation, which returns 
True or False, we can at best distinguish between two options.

– Therefore, with k operations, we can at best distinguish 2k options.
– If we have n! options, we need at least log n! operations.
– However, O(log n!) is the same as O(n log n).
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Insertion sort: Another sorting algorithm

For sorting, we have so far compared:
– Selection sort, a greedy algorithm with O(n2) time efficiency
– Mergesort, a divide-and-conquer algorithm with O(n log n) efficiency

We could be satisfied with mergesort, which has the optimal asymptotic 
efficiency. However, many applications require maintaining a sorted list.

Insertion sort is a sorting algorithm that keeps inserting into a sorted list:

Test list: [35, 16, 58, 3, 11, 106, 15, 55, 7, 81, 1]

Step 1: [35]    Step 2: [16, 35]  Step 3: [16, 35, 58]  Step 4: [3, 16, 35, 58]→ → →

…  → Step 11: [1, 3, 7, 11, 15, 16, 35, 55, 58, 81, 106]
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Insertion sort
def insertion_sort(x):

    for i in range(len(x)):

        j = 0
        element_i = x[i]

        while x[j] < element_i and j < i:
            j += 1

        if i != j:
            x.pop(i)
            x.insert(j, element_i)
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Insertion sort
def insertion_sort(x):

    for i in range(len(x)):

        j = 0
        element_i = x[i]

        while x[j] < element_i and j < i:
            j += 1

        if i != j:
            x.pop(i)
            x.insert(j, element_i)

Is it true the first time?

If true in one iteration,
is it true in the next one?

Loop invariants



1923rd November 2021CO2412

Insertion sort
def insertion_sort(x):

    for i in range(len(x)):

        j = 0
        element_i = x[i]

        while x[j] < element_i and j < i:
            j += 1

        if i != j:
            x.pop(i)
            x.insert(j, element_i)

Is it true the first time?

If true in one iteration,
is it true in the next one?

x[0: i] is sorted

x[0: j] all smaller than x[i]

x[0: i+1] is sorted
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Insertion sort
def insertion_sort(x):

    for i in range(len(x)):

        j = 0
        element_i = x[i]

        while x[j] < element_i and j < i:
            j += 1

        if i != j:
            x.pop(i)
            x.insert(j, element_i)

Is it true the first time?

If true in one iteration,
is it true in the next one?

x[0: i] is sorted

x[0: j] all smaller than x[i]

x[0: i+1] is sorted

Discussion

Would insertion sort qualify 
as following any of the 

algorithm design strategies 
that we have discussed?

Why would that be the case?
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Insertion sort
def insertion_sort(x):

    for i in range(len(x)):

        j = 0
        element_i = x[i]

        while x[j] < element_i and j < i:
            j += 1

        if i != j:
            x.pop(i)
            x.insert(j, element_i)

Is it true the first time?

If true in one iteration,
is it true in the next one?

x[0: i] is sorted

x[0: j] all smaller than x[i]

x[0: i+1] is sorted

Discussion

Would insertion sort qualify 
as following any of the 

algorithm design strategies 
that we have discussed?

Why would that be the case?

How about the part where 
the index j is determined, 

highlighted in orange?
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Insertion sort for a dynamic array: Time efficiency

def insertion_sort(x):

    for i in range(len(x)):

        j = 0
        element_i = x[i]

        while x[j] < element_i and j < i:
            j += 1

        if i != j:
            x.pop(i)
            x.insert(j, element_i)

Input size n given by len(x)

loop executed O(n) times

– O(1) instructions
– Array lookup in O(???) time

– Loop executed O(n) times
• O(1) instructions

– If x[i] needs to be shifted:
• O(???) instructions
• O(???) instructions
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Insertion sort for a dynamic array: Time efficiency

def insertion_sort(x):

    for i in range(len(x)):

        j = 0
        element_i = x[i]

        while x[j] < element_i and j < i:
            j += 1

        if i != j:
            x.pop(i)
            x.insert(j, element_i)

Input size n given by len(x)

loop executed O(n) times

– O(1) instructions
– Array lookup in O(1) time

– Loop executed O(n) times
• O(1) instructions

– If x[i] needs to be shifted:
• O(n) instructions
• O(n) instructions

O(n2) time efficiency
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Insertion of a new element: Index search

def insertion_sort(x):

    for i in range(len(x)):

        j = 0
        element_i = x[i]

        while x[j] < element_i and j < i:
            j += 1

        if i != j:
            x.pop(i)
            x.insert(j, element_i)

Could this index be determined 
more efficiently, given that the 
sublist x[0: i] is already sorted?
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Insertion of a new element: Index search

def insertion_sort(x):

    for i in range(len(x)):

        j = 0
        element_i = x[i]

        while x[j] < element_i and j < i:
            j += 1

        if i != j:
            x.pop(i)
            x.insert(j, element_i)

Could this index be determined 
more efficiently, given that the 
sublist x[0: i] is already sorted?

Insertion index search problem

Arguments:
– a list of numbers x
– an index i such that x[0:i] is sorted
– a number new_element

Find the index where new_element must 
be inserted so that x remains sorted.

Idea: Try divide-and-conquer.
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Binary search of the insertion index

[37, 47, 52, 52, 57, 91, 110, 117, 118, 147, 151, 158, 167, 195]

We would like to insert new_element = 145 into the following list:

min_index: 0 max_index: 14

min_index: 8 max_index: 14

mid_index: 7
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Binary search of the insertion index

[37, 47, 52, 52, 57, 91, 110, 117, 118, 147, 151, 158, 167, 195]

We would like to insert new_element = 145 into the following list:

min_index: 0 max_index: 14

[37, 47, 52, 52, 57, 91, 110, 117, 118, 147, 151, 158, 167, 195]
min_index: 8 max_index: 14

mid_index: 7

mid_index: 11
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Binary search of the insertion index

[37, 47, 52, 52, 57, 91, 110, 117, 118, 147, 151, 158, 167, 195]

We would like to insert new_element = 145 into the following list:

min_index: 0 max_index: 14

[37, 47, 52, 52, 57, 91, 110, 117, 118, 147, 151, 158, 167, 195]
min_index: 8 max_index: 14

[37, 47, 52, 52, 57, 91, 110, 117, 118, 147, 151, 158, 167, 195]
min_index: 8 max_index: 11

[37, 47, 52, 52, 57, 91, 110, 117, 118, 147, 151, 158, 167, 195]
min_index: 8 max_index: 9

mid_index: 7

mid_index: 11

mid_index: 9

mid_index: 8
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Binary search of the insertion index

[37, 47, 52, 52, 57, 91, 110, 117, 118, 147, 151, 158, 167, 195]

We would like to insert new_element = 145 into the following list:

min_index: 0 max_index: 14

[37, 47, 52, 52, 57, 91, 110, 117, 118, 147, 151, 158, 167, 195]
min_index: 8 max_index: 14

[37, 47, 52, 52, 57, 91, 110, 117, 118, 147, 151, 158, 167, 195]
min_index: 8 max_index: 11

[37, 47, 52, 52, 57, 91, 110, 117, 118, 147, 151, 158, 167, 195]
min_index: 8 max_index: 9

[37, 47, 52, 52, 57, 91, 110, 117, 118,   here!,   147, 151, 158, 167, 195]
min_index: 9 max_index: 9

mid_index: 7

mid_index: 11

mid_index: 9

mid_index: 8
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Insertion index binary search

def insertion_index_binary_search(x, i, new_element):
    idx_min, idx_max = 0, i
    while idx_max > idx_min:
        idx_mid = (idx_min + idx_max) // 2
        if x[idx_mid] < new_element:

            idx_min = idx_mid+1
        else:

            idx_max = idx_mid

    return idx_min
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Insertion index binary search

def insertion_index_binary_search(x, i, new_element):
    idx_min, idx_max = 0, i
    while idx_max > idx_min:
        idx_mid = (idx_min + idx_max) // 2
        if x[idx_mid] < new_element:

            idx_min = idx_mid+1
        else:

            idx_max = idx_mid

    return idx_min

correct index is 
greater than 
idx_mid

correct index is 
smaller than or 
equal to idx_mid

idx_min = idx_max
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Binary search of the insertion index

Discussion

What is the time efficiency of this binary search?
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Binary search of the insertion index

Discussion

What is the time efficiency of this binary search?

Could this algorithm also be used to find whether 
a sorted list contains a certain value, and to 

return the index for that value if it does?
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Improved insertion sort algorithm

def insertion_sort(x):

    for i in range(len(x)):

        j = 0
        element_i = x[i]

        j = insertion_index_binary_search( \
                   x, i, element_i, False )

        if i != j:
            x.pop(i)
            x.insert(j, element_i)

Input size n given by len(x)

loop executed O(n) times

– O(1) instructions
– Array lookup in O(1) time

– Improved due to binary search

– If x[i] needs to be shifted:
• O(n) instructions
• O(n) instructions

O(n2) average/worst case time efficiency
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Improved insertion sort algorithm

def insertion_sort(x):

    for i in range(len(x)):

        j = 0
        element_i = x[i]

        j = insertion_index_binary_search( \
                   x, i, element_i, False )

        if i != j:
            x.pop(i)
            x.insert(j, element_i)

Input size n given by len(x)

loop executed O(n) times

– O(1) instructions
– Array lookup in O(1) time

– Improved due to binary search

– If x[i] needs to be shifted:
• O(n) instructions
• O(n) instructions

O(n2) average/worst case time efficiencyWhat is the best-case
time efficiency?
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Sorting algorithms: Overview

insertion sort + binary search

simple insertion sortselection sort

mergesort
O(n log n)
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Sorting algorithms: Overview

See G. Dlamini et al., Inform. Sci. 582, 767–777, 2022, for a comparison of 
sorting algorithms with respect to their energy consumption performance.

insertion sort + binary search

simple insertion sortselection sort

mergesort
O(n log n)
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Tree data structures:
Introduction
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Binary search: Unapplicable to linked lists

[37, 47, 52, 52, 57, 91, 110, 117, 118, 147, 151, 158, 167, 195]

We would like to insert new_element = 145 into the following list:

min_index: 0 max_index: 14

[37, 47, 52, 52, 57, 91, 110, 117, 118, 147, 151, 158, 167, 195]
min_index: 8 max_index: 14

[37, 47, 52, 52, 57, 91, 110, 117, 118, 147, 151, 158, 167, 195]
min_index: 8 max_index: 11

[37, 47, 52, 52, 57, 91, 110, 117, 118, 147, 151, 158, 167, 195]
min_index: 8 max_index: 9

[37, 47, 52, 52, 57, 91, 110, 117, 118,   here!,   147, 151, 158, 167, 195]
min_index: 9 max_index: 9

mid_index: 7

mid_index: 11

mid_index: 9

mid_index: 8

Question: Why does this work for a dynamic array, but not for a linked list?
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Non-sequential linked data structures

[37, 47, 52, 53, 57, 91, 110, 117, 118, 147, 151, 158, 167, 195]

What if we design a linked data structure to recover the binary search feature?

117

Is your value smaller than the 
root element? Then go here …

Is your value greater than the 
root element? Then go here …
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Non-sequential linked data structures

[37, 47, 52, 53, 57, 91, 110, 117, 118, 147, 151, 158, 167, 195]

What if we design a linked data structure to recover the binary search feature?

117

53 151

<

< < >>

>
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Tree data structures

[37, 47, 52, 53, 57, 91, 110, 117, 118, 147, 151, 158, 167, 195]

What if we design a linked data structure to recover the binary search feature?

117

53 151

47 91

37 52 110

118

None 147

167

158 195

<

<

<

<

< < <> > > >

>>

>

57
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Tree data structures: Binary search trees

[37, 47, 52, 53, 57, 91, 110, 117, 118, 147, 151, 158, 167, 195]

This data structure is known as a binary search tree.

117

53 151

47 91

37 110

118

None 147

167

158 195

<

<

<

<

< < <> > > >

>>

>

52 57
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