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Main concepts from the previous lecture

Trees as a special kind of graph, and graphs as a generalization of trees

graphtree (a kind of graph)

diamond

cycle cycle

unique 
root

Remark

Trees are graphs, and all that is said about graphs applies to trees also.
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Main concepts from the previous lecture

Depth of a tree and (re-)balancing of a search tree

node with depth 0

nodes with depth 1

nodes with depth 2

nodes with depth 3

binary search
tree with
depth 3

depth of a 
tree: length 
of the long-

est path

To search for an element or to insert a new element, links have to be followed 
downward. The number of these links is bounded by the depth of the tree.
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Main concepts from the previous lecture

Depth of a tree and (re-)balancing of a search tree

4

5

6

7

8

imbalance between 
branches (i.e., subtrees)

size 3 size 1

NoneNone

NoneNoneNoneNone

None
None

None

None

To search for an element or to insert a new element, links have to be followed 
downward. The number of these links is bounded by the depth of the tree.
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Main concepts from the previous lecture

Depth of a tree and (re-)balancing of a search tree

4

6

7

None
None

None

None
None

5

None None

None
8

None None

size 2 size 2

Remark: Doing this 
efficiently relies on 
being able to traverse 
the tree in order.

To search for an element or to insert a new element, links have to be followed 
downward. The number of these links is bounded by the depth of the tree.
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Main concepts from the previous lecture

Traversal of trees and graphs: Binary search trees

4

6

7

None
None

None

None
None

5

None None

None
8

None None

0

1

2

3 Traversal algorithm:

– traverse the left 
subordinate branch
(if there is one)

– visit the root node

– traverse the right 
subordinate branch 
(if there is one)
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Main concepts from the previous lecture

Traversal of trees and graphs: Depth-first search and breadth-first search

depth-first search (DFS)

0
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3 4

5

67

8

9
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5

7

9

8

6

begin
here

breadth-first search (BFS)

begin
here

DFS always proceeds from the most recently detected node (LIFO).
BFS always proceeds from the node that was detected earliest (FIFO).



87th December 2021CO2412

Main concepts from the previous lecture

Traversal of trees and graphs: Depth-first search and breadth-first search

depth-first search (DFS)
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begin
here

breadth-first search (BFS)

begin
here

DFS always proceeds from the most recently detected node (LIFO).
BFS always proceeds from the node that was detected earliest (FIFO).

Note: Only elements to which there is a path from the initial node can be found.
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Related concept: Spanning tree

DFS spanning tree

root 
node

BFS spanning tree

root 
node

A graph that is not a tree can be reduced to a tree by eliminating edges. Such 
a tree is called a spanning tree if it covers all nodes. When needed, this is of-
ten done by DFS or BFS, retaining only the edges followed for visiting nodes.

This construction is only feasible if there are paths to all nodes from the root.

greedy
algorithm(s)
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Tutorial problems
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Number matching (T1.3.2)

def natmatch(x, y):
    for i in range(len(x)):
        for j in range(i+1, len(x)):
            if (x[i]+x[j] == y) and (x[i] != x[j]):
                return [x[i], x[j]]
    return []

for i in range(len(x)):

for j in range(i+1, len(x)):

if (x[i]+x[j] == y) and (x[i] != x[j]):

return [x[i], x[j]]

return []

end

next
S4

final state S3

end

S2

next
S1

S5

true
S6

false

S8

Specification

The function takes a list x 
and a natural number y 
as arguments. If in the 
list x, there are elements 
a and b which are not 
equal and add up to y, 
the list [a, b] is returned; 
otherwise, [] is returned. final state S7
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Number matching (T1.3.2)

def natmatch(x, y):

    for i in range(len(x)):

        for j in range(i+1, len(x)):

            if (x[i]+x[j] == y) and (x[i] != x[j]):

                return [x[i], x[j]]

    return []

Note: Input size n given by len(x)

loop executed O(n) times:

– loop executed O(n) times:

• O(1) instructions

• O(1) optional instructions

O(1) optional instructions

O(n) · O(n·1) + O(1)  =  O(n2) instructions

O(n2) time efficiency
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Number matching (T1.3.2)

Improved algorithm implemented by Harry Rowan:

def natmatch(x, y):
    mydict = {}
    for i in range(len(x)):
        c = y - x[i]
        if c in mydict:
            return [c, x[i]]
        mydict[x[i]] = i
    return []

Python dictionaries and sets could be 
used to this effect equivalently.

Example, x = [6, 4, 5, 3, 9], y = 11:

6 → 11 – 6 = 5 not found in storage
insert 6 into storage

4 → 11 – 4 = 7 not found in storage
insert 4 into storage

5 → 11 – 5 = 6 found in storage
return [6, 5]
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Number matching (T1.3.2)

Improved algorithm implemented by Harry Rowan:

def natmatch(x, y):
    mydict = {}
    for i in range(len(x)):
        c = y - x[i]
        if c in mydict:
            return [c, x[i]]
        mydict[x[i]] = i
    return []

Fig. from Wikipedia, “Hash table”

Python dictionaries and sets are implemen-
ted as dynamically resized hash tables:
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Number matching (T1.3.2)

Improved algorithm implemented by Harry Rowan; worst case still O(n2):

def natmatch(x, y):
    mydict = {}
    for i in range(len(x)):
        c = y - x[i]
        if c in mydict:
            return [c, x[i]]
        mydict[x[i]] = i
    return []

Python dictionaries and sets are implemen-
ted as dynamically resized hash tables:

hash
function

Fig. from Wikipedia, “Hash table”

In the worst case, this data struc-
ture has O(n) time for search 
and insertion. For the average 
case, it is highly efficient.
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Number matching (T1.3.2)

Improved algorithm implemented by Harry Rowan:

def natmatch(x, y):
    initialize empty storage
    for i in range(len(x)):
        c = y - x[i]
        if storage.contains(c):
            return [c, x[i]]
        storage.insert(x[i])
    return []

What is the time efficiency? How does it 
depend on the employed data structure?

Example, x = [6, 4, 5, 3, 9], y = 11:

6 → 11 – 6 = 5 not found in storage
insert 6 into storage

4 → 11 – 4 = 7 not found in storage
insert 4 into storage

5 → 11 – 5 = 6 found in storage
return [6, 5]

O(n) loop operations.

Each with one search operation 
and one insertion operation.
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Number matching (T1.3.2)

Improved algorithm implemented by Harry Rowan:

def natmatch(x, y):
    initialize empty storage
    for i in range(len(x)):
        c = y - x[i]
        if storage.contains(c):
            return [c, x[i]]
        storage.insert(x[i])
    return []

What is the time efficiency? How does it 
depend on the employed data structure?

How about:
– Unsorted linked list or dyn. array?

– A sorted dynamic array?

– A sorted linked list or an 
unbalanced search tree?

– A balanced search tree?

– Python sets or dicts?

O(n) loop operations.

Each with one search operation 
and one insertion operation.
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Number matching (T1.3.2)

Improved algorithm implemented by Harry Rowan:

def natmatch(x, y):
    initialize empty storage
    for i in range(len(x)):
        c = y - x[i]
        if storage.contains(c):
            return [c, x[i]]
        storage.insert(x[i])
    return []

What is the time efficiency? How does it 
depend on the employed data structure?

How about:
– Unsorted linked list or dyn. array?

s done in O(n), i done in O(1).
– A sorted dynamic array?

s done in O(log n), i done in O(n).
– A sorted linked list or an 

unbalanced search tree?
s done in O(n), i done in O(n).

– A balanced search tree?
s and i both done in O(log n).

– Python sets or dicts?
Worst case O(n) for both s and i.

O(n) loop operations.

Each with one search (s) operation 
and one insertion (i) operation.
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Number matching (T1.3.2)

Improved algorithm implemented by Harry Rowan:

def natmatch(x, y):
    initialize empty storage
    for i in range(len(x)):
        c = y - x[i]
        if storage.contains(c):
            return [c, x[i]]
        storage.insert(x[i])
    return []

O(n) loop operations.
– O(log n) time per iteration.

O(n log n) with a balanced tree.

What is the time efficiency? How does it 
depend on the employed data structure?

How about:
– Unsorted linked list or dyn. array?

s done in O(n), i done in O(1).
– A sorted dynamic array?

s done in O(log n), i done in O(n).
– A sorted linked list or an 

unbalanced search tree?
s done in O(n), i done in O(n).

– A balanced search tree?
s and i both done in O(log n).

– Python sets or dicts?
Worst case O(n) for both s and i.
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Cashier problem (T2.2)

The cashier problem is specified as follows. The function solving the problem 
has two arguments:

1) first, a natural number, given in the smallest currency unit (e.g., pence), 
representing an amount of money that is to be paid out;

2) second, a sorted list with the values of the existing coin types, in the 
same currency unit (we assume that “1” is always among these values).

As the function’s return value, we expect a list containing coin values that add 
up to the requested amount; this must be the shortest possible list, i.e., we 
want to use as few coins as possible.

Note that as a precondition it is assumed that the list passed as the function's 
second argument is already sorted.
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Cashier problem (T2.2)

greedy algorithm

def cashier(amount, coin_types):
    coins = []
    remainder = amount

    while remainder >= coin_types[0]:

        for i in range(len(coin_types)-1, -1, -1):
            if remainder >= coin_types[i]:
                coins.append(coin_types[i])
                remainder -= coin_types[i]
                break
    return coins

amount = 12,
coin_types = [1, 2, 5, 10]

remainder = 12,
coins = []

remainder = 2,
coins = [10]

remainder = 0,
coins = [10, 2]

return [10, 2]
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Cashier problem (T2.2)

Condition for the greedy algorithm:
The shortest sum containing coin x never 
consists of more coins than the shortest 
equivalent sum containing only coins < x.

def cashier(amount, coin_types):
    coins = []
    remainder = amount
    while remainder >= coin_types[0]:
        for i in range(len(coin_types)-1, -1, -1):
            if remainder >= coin_types[i]:
                coins.append(coin_types[i])
                remainder -= coin_types[i]
                break
    return coins

amount = 12,
coin_types = [1, 4, 9, 16]

remainder = 12,
coins = []

remainder = 3,
coins = [9]

remainder = 2,
coins = [9, 1]

remainder = 1,
coins = [9, 1, 1]

remainder = 0,
coins = [9, 1, 1, 1]

return [9, 1, 1, 1]
compare 
[4, 4, 4]
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Cashier problem (T2.2)

def cashier(amount, coin_types):
    coins = []
    remainder = amount

    while remainder >= coin_types[0]:

        for i in range(len(coin_types)-1, -1, -1):
            if remainder >= coin_types[i]:
                coins.append(coin_types[i])
                remainder -= coin_types[i]
                break
    return coins

greedy algorithm Let n = amount and k = len(coin_types).

O(1) instructions

Upper bound: O(n) iterations

– Upper bound: O(k) iterations

• O(1) time on average, for
a well-managed dyn. array.
O(1) time worst case if we 
were using a linked list.
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Cashier problem (T2.2)

def cashier(amount, coin_types):
    coins = []
    remainder = amount

    while remainder >= coin_types[0]:

        for i in range(len(coin_types)-1, -1, -1):
            if remainder >= coin_types[i]:
                coins.append(coin_types[i])
                remainder -= coin_types[i]
                break
    return coins

greedy algorithm Let n = amount and k = len(coin_types).

O(1) instructions

Upper bound: O(n) iterations

– Upper bound: O(k) iterations

• O(1) time* per iteration
[*rigorous with a linked list]

O(kn) time efficiency

that is O(n) if k is treated as constant
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Cashier problem (T2.2)

Illustration: Dynamic programming algorithm for the cashier problem

amount = 12,
coin_types = [1, 4, 9, 16]12

1183

1
4

9

[1][4][9]

[]
16

1

If we return a 9-valued coin, the remainder reduces to 3.
If we return a 4-valued coin, the remainder reduces to 8.
If we return a 1-valued coin, the remainder reduces to 11.
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Cashier problem (T2.2)

Illustration: Dynamic programming algorithm for the cashier problem

amount = 12,
coin_types = [1, 4, 9, 16]12

1183

1
4

9

[1][4][9]

[]
16

2 4 7 10

1

[9, 1]

4, 9, 16

[1, 1]

1

4

9, 16

[4, 4]

9

4 1

1

4[9, 1] [4, 1]
two coins 
required

one coin 
required

A remainder of 12 currency units can be reached using zero coins.
A remainder of 3, 8, or 11 can be reached using one coin.
A remainder of 2, 4, 7, or 10 can be reached using two coins.

16
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Cashier problem (T2.2)

Illustration: Dynamic programming algorithm for the cashier problem

amount = 12,
coin_types = [1, 4, 9, 16]12

1183
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4[9, 1] [4, 1]
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4 1
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required
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required16
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Cashier problem (T2.2)

Overlapping subproblems, e.g., equivalence of [9, 1, 1], [1, 9, 1], and [1, 1, 9]

amount = 12,
coin_types = [1, 4, 9, 16]12
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Cashier problem (T2.2)

Illustration: Dynamic programming algorithm for the cashier problem

12
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1 0 6 9

4

1 4
1

1

This reduces to 
computing a BFS 
spanning tree,

over a graph with at 
most n+1 nodes,

with node out-degree 
upper bound of k.

Time efficiency O(kn), 
same as for the 
greedy algorithm.
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Implementing graph
data structures
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Graphs as data structures: Implementation

sparse graphs

Neighbour lists, implemented as adjacency or incidence lists, are most suita-
ble for sparse graphs. Matrix-like data structures are best for dense graphs.

dense graphs
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Graphs as data structures: Implementation

There are a variety of ways of implementing graphs. It depends on the kind of 
graph and the use case which of them is the most suitable one.

0

1

2

3

sparse graphs
next

vertex no. 0

vertex no. 1

vertex no. 2

vertex no. 3

adjacency 
list

(here, list of vertices 
to which there is an 

outgoing edge)
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Graphs as data structures: Implementation

Remark: If the vertices do not have any specific properties at all, there is no 
strict need to distinguish them from their outgoing adjacency lists.

0

1

2

3

sparse graphs

vertex no. 0 vertex no. 1

vertex no. 2

vertex no. 3

adjacency 
list

(here, list of vertices 
to which there is an 

outgoing edge)
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Graphs as data structures: Implementation

Most technically relevant use cases work with labelled graphs, where at least 
the vertices (often also the edges) are associated with a data item, the label.

0

1

2

3

4

5

7

8

6

sparse graphs with
labelled vertices

0

label next

9

vertex

vertex no. 1

vertex no. 2

vertex no. 3

adjacency 
list

(here, list of vertices 
to which there is an 

outgoing edge)
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Graphs as data structures: Implementation

Remark: This construction is particularly suitable for tree data structures, since 
trees are by definition sparse graphs, and they normally contain data items.

0
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4
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7

8

6

sparse graphs with
labelled vertices

0

label next

9

adjacency 
list

1

2

3

vertex

empty 
list

empty 
list

list with pointers (or object references) 
to vertex 4 and vertex 5

(here, list of vertices 
to which there is an 

outgoing edge)
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Graphs as data structures: Implementation

Instead of singly list data structures, doubly linked data structures can also be 
used; e.g., with an additional adjacency list pointing to predecessor nodes.
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sparse graphs with
labelled vertices

vertex

0
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adjacency 
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Graphs as data structures: Implementation

For adjacency lists or incidence lists, a variety of data structures can be used, 
e.g., dynamic arrays. They need not be sequential data structures.
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4

5

7
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a

a

aa

a
a

b

b

d

sparse graphs with
labelled vertices and edges

vertex

3

label out

9

c
a

label

label

target

edge

edge

vertex 5

vertex 4

a

b

target

incidence
list
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Graphs as data structures: Implementation

For adjacency lists or incidence lists, a variety of data structures can be used, 
e.g., dynamic arrays. They need not be sequential data structures.
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sparse graphs with
labelled vertices and edges

vertex

3

label out

9

c
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edge
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target

incidence
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(here, list of outgoing 
edges to which the 
vertex is incident)
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Graphs as data structures: Implementation

Instead of singly list data structures, the corresponding doubly linked alterna-
tives can always be used; e.g., with links to source nodes and incoming edges.

0

1

2

3

4

5

7

8

6

a

a

aa

a
a

b

b

d

sparse graphs with
labelled vertices and edges

vertex

3

label outin
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Graphs as data structures: Implementation

Matrix-like data structures in Python include lists of lists (i.e., 2D dynamic 
arrays), if the numpy library is used, two-dimensional static arrays. For graphs, 
the most relevant data structure of this type is the adjacency matrix.

0

1

2

3

4

adj = [ [0, 1, 1, 0, 0],

[0, 0, 0, 1, 0],

[1, 1, 0, 0, 0],

[0, 1, 1, 0, 0],

[1, 0, 1, 0, 0] ]

edge from 2 to 1

no edge 
from 3 to 4

adj[2][1] = 1, or True

adj[3][4] = 0, or False
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Graphs as data structures: Implementation

Matrix-like data structures in Python include lists of lists (i.e., 2D dynamic 
arrays), if the numpy library is used, two-dimensional static arrays. For graphs, 
the most relevant data structure of this type is the adjacency matrix.

For a sparse graph, the vast majority of entries in the 2D array/matrix is zero. 
Adjacency matrices are commonly only used when expecting a dense graph.
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4

adj = [ [0, 1, 1, 0, 0],

[0, 0, 0, 1, 0],

[1, 1, 0, 0, 0],

[0, 1, 1, 0, 0],

[1, 0, 1, 0, 0] ]

out of node 0

out of node 1

out of node 2

out of node 3
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