
Where opportunity creates success

CO2412
Computational Thinking

Tutorial problems
Implementing graph data structures

27th December 2021CO2412

Main concepts from the previous lecture

Trees as a special kind of graph, and graphs as a generalization of trees

graphtree (a kind of graph)

diamond

cycle cycle

unique
root

Remark

Trees are graphs, and all that is said about graphs applies to trees also.

37th December 2021CO2412

Main concepts from the previous lecture

Depth of a tree and (re-)balancing of a search tree

node with depth 0

nodes with depth 1

nodes with depth 2

nodes with depth 3

binary search
tree with
depth 3

depth of a
tree: length
of the long-

est path

To search for an element or to insert a new element, links have to be followed
downward. The number of these links is bounded by the depth of the tree.

47th December 2021CO2412

Main concepts from the previous lecture

Depth of a tree and (re-)balancing of a search tree

4

5

6

7

8

imbalance between
branches (i.e., subtrees)

size 3 size 1

NoneNone

NoneNoneNoneNone

None
None

None

None

To search for an element or to insert a new element, links have to be followed
downward. The number of these links is bounded by the depth of the tree.

57th December 2021CO2412

Main concepts from the previous lecture

Depth of a tree and (re-)balancing of a search tree

4

6

7

None
None

None

None
None

5

None None

None
8

None None

size 2 size 2

Remark: Doing this
efficiently relies on
being able to traverse
the tree in order.

To search for an element or to insert a new element, links have to be followed
downward. The number of these links is bounded by the depth of the tree.

67th December 2021CO2412

Main concepts from the previous lecture

Traversal of trees and graphs: Binary search trees

4

6

7

None
None

None

None
None

5

None None

None
8

None None

0

1

2

3 Traversal algorithm:

– traverse the left
subordinate branch
(if there is one)

– visit the root node

– traverse the right
subordinate branch
(if there is one)

77th December 2021CO2412

Main concepts from the previous lecture

Traversal of trees and graphs: Depth-first search and breadth-first search

depth-first search (DFS)

0

12

3 4

5

67

8

9

0

1

2

3

4

5

7

9

8

6

begin
here

breadth-first search (BFS)

begin
here

DFS always proceeds from the most recently detected node (LIFO).
BFS always proceeds from the node that was detected earliest (FIFO).

87th December 2021CO2412

Main concepts from the previous lecture

Traversal of trees and graphs: Depth-first search and breadth-first search

depth-first search (DFS)

0

12

3 4

5

67

8

9

0

1

2

3

4

5

7

9

8

6

begin
here

breadth-first search (BFS)

begin
here

DFS always proceeds from the most recently detected node (LIFO).
BFS always proceeds from the node that was detected earliest (FIFO).

Note: Only elements to which there is a path from the initial node can be found.

97th December 2021CO2412

Related concept: Spanning tree

DFS spanning tree

root
node

BFS spanning tree

root
node

A graph that is not a tree can be reduced to a tree by eliminating edges. Such
a tree is called a spanning tree if it covers all nodes. When needed, this is of-
ten done by DFS or BFS, retaining only the edges followed for visiting nodes.

This construction is only feasible if there are paths to all nodes from the root.

greedy
algorithm(s)

7th December 2021CO2412

Tutorial problems

117th December 2021CO2412

Number matching (T1.3.2)

def natmatch(x, y):
 for i in range(len(x)):
 for j in range(i+1, len(x)):
 if (x[i]+x[j] == y) and (x[i] != x[j]):
 return [x[i], x[j]]
 return []

for i in range(len(x)):

for j in range(i+1, len(x)):

if (x[i]+x[j] == y) and (x[i] != x[j]):

return [x[i], x[j]]

return []

end

next
S4

final state S3

end

S2

next
S1

S5

true
S6

false

S8

Specification

The function takes a list x
and a natural number y
as arguments. If in the
list x, there are elements
a and b which are not
equal and add up to y,
the list [a, b] is returned;
otherwise, [] is returned. final state S7

127th December 2021CO2412

Number matching (T1.3.2)

def natmatch(x, y):

 for i in range(len(x)):

 for j in range(i+1, len(x)):

 if (x[i]+x[j] == y) and (x[i] != x[j]):

 return [x[i], x[j]]

 return []

Note: Input size n given by len(x)

loop executed O(n) times:

– loop executed O(n) times:

• O(1) instructions

• O(1) optional instructions

O(1) optional instructions

O(n) · O(n·1) + O(1) = O(n2) instructions

O(n2) time efficiency

137th December 2021CO2412

Number matching (T1.3.2)

Improved algorithm implemented by Harry Rowan:

def natmatch(x, y):
 mydict = {}
 for i in range(len(x)):
 c = y - x[i]
 if c in mydict:
 return [c, x[i]]
 mydict[x[i]] = i
 return []

Python dictionaries and sets could be
used to this effect equivalently.

Example, x = [6, 4, 5, 3, 9], y = 11:

6 → 11 – 6 = 5 not found in storage
insert 6 into storage

4 → 11 – 4 = 7 not found in storage
insert 4 into storage

5 → 11 – 5 = 6 found in storage
return [6, 5]

147th December 2021CO2412

Number matching (T1.3.2)

Improved algorithm implemented by Harry Rowan:

def natmatch(x, y):
 mydict = {}
 for i in range(len(x)):
 c = y - x[i]
 if c in mydict:
 return [c, x[i]]
 mydict[x[i]] = i
 return []

Fig. from Wikipedia, “Hash table”

Python dictionaries and sets are implemen-
ted as dynamically resized hash tables:

157th December 2021CO2412

Number matching (T1.3.2)

Improved algorithm implemented by Harry Rowan; worst case still O(n2):

def natmatch(x, y):
 mydict = {}
 for i in range(len(x)):
 c = y - x[i]
 if c in mydict:
 return [c, x[i]]
 mydict[x[i]] = i
 return []

Python dictionaries and sets are implemen-
ted as dynamically resized hash tables:

hash
function

Fig. from Wikipedia, “Hash table”

In the worst case, this data struc-
ture has O(n) time for search
and insertion. For the average
case, it is highly efficient.

167th December 2021CO2412

Number matching (T1.3.2)

Improved algorithm implemented by Harry Rowan:

def natmatch(x, y):
 initialize empty storage
 for i in range(len(x)):
 c = y - x[i]
 if storage.contains(c):
 return [c, x[i]]
 storage.insert(x[i])
 return []

What is the time efficiency? How does it
depend on the employed data structure?

Example, x = [6, 4, 5, 3, 9], y = 11:

6 → 11 – 6 = 5 not found in storage
insert 6 into storage

4 → 11 – 4 = 7 not found in storage
insert 4 into storage

5 → 11 – 5 = 6 found in storage
return [6, 5]

O(n) loop operations.

Each with one search operation
and one insertion operation.

177th December 2021CO2412

Number matching (T1.3.2)

Improved algorithm implemented by Harry Rowan:

def natmatch(x, y):
 initialize empty storage
 for i in range(len(x)):
 c = y - x[i]
 if storage.contains(c):
 return [c, x[i]]
 storage.insert(x[i])
 return []

What is the time efficiency? How does it
depend on the employed data structure?

How about:
– Unsorted linked list or dyn. array?

– A sorted dynamic array?

– A sorted linked list or an
unbalanced search tree?

– A balanced search tree?

– Python sets or dicts?

O(n) loop operations.

Each with one search operation
and one insertion operation.

187th December 2021CO2412

Number matching (T1.3.2)

Improved algorithm implemented by Harry Rowan:

def natmatch(x, y):
 initialize empty storage
 for i in range(len(x)):
 c = y - x[i]
 if storage.contains(c):
 return [c, x[i]]
 storage.insert(x[i])
 return []

What is the time efficiency? How does it
depend on the employed data structure?

How about:
– Unsorted linked list or dyn. array?

s done in O(n), i done in O(1).
– A sorted dynamic array?

s done in O(log n), i done in O(n).
– A sorted linked list or an

unbalanced search tree?
s done in O(n), i done in O(n).

– A balanced search tree?
s and i both done in O(log n).

– Python sets or dicts?
Worst case O(n) for both s and i.

O(n) loop operations.

Each with one search (s) operation
and one insertion (i) operation.

197th December 2021CO2412

Number matching (T1.3.2)

Improved algorithm implemented by Harry Rowan:

def natmatch(x, y):
 initialize empty storage
 for i in range(len(x)):
 c = y - x[i]
 if storage.contains(c):
 return [c, x[i]]
 storage.insert(x[i])
 return []

O(n) loop operations.
– O(log n) time per iteration.

O(n log n) with a balanced tree.

What is the time efficiency? How does it
depend on the employed data structure?

How about:
– Unsorted linked list or dyn. array?

s done in O(n), i done in O(1).
– A sorted dynamic array?

s done in O(log n), i done in O(n).
– A sorted linked list or an

unbalanced search tree?
s done in O(n), i done in O(n).

– A balanced search tree?
s and i both done in O(log n).

– Python sets or dicts?
Worst case O(n) for both s and i.

207th December 2021CO2412

Cashier problem (T2.2)

The cashier problem is specified as follows. The function solving the problem
has two arguments:

1) first, a natural number, given in the smallest currency unit (e.g., pence),
representing an amount of money that is to be paid out;

2) second, a sorted list with the values of the existing coin types, in the
same currency unit (we assume that “1” is always among these values).

As the function’s return value, we expect a list containing coin values that add
up to the requested amount; this must be the shortest possible list, i.e., we
want to use as few coins as possible.

Note that as a precondition it is assumed that the list passed as the function's
second argument is already sorted.

217th December 2021CO2412

Cashier problem (T2.2)

greedy algorithm

def cashier(amount, coin_types):
 coins = []
 remainder = amount

 while remainder >= coin_types[0]:

 for i in range(len(coin_types)-1, -1, -1):
 if remainder >= coin_types[i]:
 coins.append(coin_types[i])
 remainder -= coin_types[i]
 break
 return coins

amount = 12,
coin_types = [1, 2, 5, 10]

remainder = 12,
coins = []

remainder = 2,
coins = [10]

remainder = 0,
coins = [10, 2]

return [10, 2]

227th December 2021CO2412

Cashier problem (T2.2)

Condition for the greedy algorithm:
The shortest sum containing coin x never
consists of more coins than the shortest
equivalent sum containing only coins < x.

def cashier(amount, coin_types):
 coins = []
 remainder = amount
 while remainder >= coin_types[0]:
 for i in range(len(coin_types)-1, -1, -1):
 if remainder >= coin_types[i]:
 coins.append(coin_types[i])
 remainder -= coin_types[i]
 break
 return coins

amount = 12,
coin_types = [1, 4, 9, 16]

remainder = 12,
coins = []

remainder = 3,
coins = [9]

remainder = 2,
coins = [9, 1]

remainder = 1,
coins = [9, 1, 1]

remainder = 0,
coins = [9, 1, 1, 1]

return [9, 1, 1, 1]
compare
[4, 4, 4]

237th December 2021CO2412

Cashier problem (T2.2)

def cashier(amount, coin_types):
 coins = []
 remainder = amount

 while remainder >= coin_types[0]:

 for i in range(len(coin_types)-1, -1, -1):
 if remainder >= coin_types[i]:
 coins.append(coin_types[i])
 remainder -= coin_types[i]
 break
 return coins

greedy algorithm Let n = amount and k = len(coin_types).

O(1) instructions

Upper bound: O(n) iterations

– Upper bound: O(k) iterations

• O(1) time on average, for
a well-managed dyn. array.
O(1) time worst case if we
were using a linked list.

247th December 2021CO2412

Cashier problem (T2.2)

def cashier(amount, coin_types):
 coins = []
 remainder = amount

 while remainder >= coin_types[0]:

 for i in range(len(coin_types)-1, -1, -1):
 if remainder >= coin_types[i]:
 coins.append(coin_types[i])
 remainder -= coin_types[i]
 break
 return coins

greedy algorithm Let n = amount and k = len(coin_types).

O(1) instructions

Upper bound: O(n) iterations

– Upper bound: O(k) iterations

• O(1) time* per iteration
[*rigorous with a linked list]

O(kn) time efficiency

that is O(n) if k is treated as constant

257th December 2021CO2412

Cashier problem (T2.2)

Illustration: Dynamic programming algorithm for the cashier problem

amount = 12,
coin_types = [1, 4, 9, 16]12

1183

1
4

9

[1][4][9]

[]
16

1

If we return a 9-valued coin, the remainder reduces to 3.
If we return a 4-valued coin, the remainder reduces to 8.
If we return a 1-valued coin, the remainder reduces to 11.

267th December 2021CO2412

Cashier problem (T2.2)

Illustration: Dynamic programming algorithm for the cashier problem

amount = 12,
coin_types = [1, 4, 9, 16]12

1183

1
4

9

[1][4][9]

[]
16

2 4 7 10

1

[9, 1]

4, 9, 16

[1, 1]

1

4

9, 16

[4, 4]

9

4 1

1

4[9, 1] [4, 1]
two coins
required

one coin
required

A remainder of 12 currency units can be reached using zero coins.
A remainder of 3, 8, or 11 can be reached using one coin.
A remainder of 2, 4, 7, or 10 can be reached using two coins.

16

277th December 2021CO2412

Cashier problem (T2.2)

Illustration: Dynamic programming algorithm for the cashier problem

amount = 12,
coin_types = [1, 4, 9, 16]12

1183

1
4

9

[1][4][9]

[]
16

2 4 7 10

1

[9, 1]

4, 9, 16

[1, 1]

1

4

9, 16

[4, 4]

9

4 1

1

1 0 6 9[9, 1, 1] [1, 1, 1][4, 4, 4]

4[9, 1] [4, 1]

4, 9, 16
1

1

4

9, 16

4

1

[4, 1, 1]

9, 16

9

4 1

three coins
required

two coins
required

one coin
required16

16

287th December 2021CO2412

Cashier problem (T2.2)

Overlapping subproblems, e.g., equivalence of [9, 1, 1], [1, 9, 1], and [1, 1, 9]

amount = 12,
coin_types = [1, 4, 9, 16]12

1183

1
4

9

[1][4][9]

[]
16

2 4 7 10

1

[9, 1]

4, 9, 16

[1, 1]

1

4

9, 16

[4, 4]

9

4 1

1

1 0 6 9[9, 1, 1] [1, 1, 1][4, 4, 4]

4[9, 1] [4, 1]

4, 9, 16
1

1

4

9, 16

4

1

[4, 1, 1]

9, 16

9

4 1

three coins
required

two coins
required

one coin
required16

16

297th December 2021CO2412

Cashier problem (T2.2)

Illustration: Dynamic programming algorithm for the cashier problem

12

1183

1
4

9

2 4 7 10

1
1

4
1

1

1 0 6 9

4

1 4
1

1

This reduces to
computing a BFS
spanning tree,

over a graph with at
most n+1 nodes,

with node out-degree
upper bound of k.

Time efficiency O(kn),
same as for the
greedy algorithm.

7th December 2021CO2412

Implementing graph
data structures

317th December 2021CO2412

Graphs as data structures: Implementation

sparse graphs

Neighbour lists, implemented as adjacency or incidence lists, are most suita-
ble for sparse graphs. Matrix-like data structures are best for dense graphs.

dense graphs

327th December 2021CO2412

Graphs as data structures: Implementation

There are a variety of ways of implementing graphs. It depends on the kind of
graph and the use case which of them is the most suitable one.

0

1

2

3

sparse graphs
next

vertex no. 0

vertex no. 1

vertex no. 2

vertex no. 3

adjacency
list

(here, list of vertices
to which there is an

outgoing edge)

337th December 2021CO2412

Graphs as data structures: Implementation

Remark: If the vertices do not have any specific properties at all, there is no
strict need to distinguish them from their outgoing adjacency lists.

0

1

2

3

sparse graphs

vertex no. 0 vertex no. 1

vertex no. 2

vertex no. 3

adjacency
list

(here, list of vertices
to which there is an

outgoing edge)

347th December 2021CO2412

Graphs as data structures: Implementation

Most technically relevant use cases work with labelled graphs, where at least
the vertices (often also the edges) are associated with a data item, the label.

0

1

2

3

4

5

7

8

6

sparse graphs with
labelled vertices

0

label next

9

vertex

vertex no. 1

vertex no. 2

vertex no. 3

adjacency
list

(here, list of vertices
to which there is an

outgoing edge)

357th December 2021CO2412

Graphs as data structures: Implementation

Remark: This construction is particularly suitable for tree data structures, since
trees are by definition sparse graphs, and they normally contain data items.

0

1

2

3

4

5

7

8

6

sparse graphs with
labelled vertices

0

label next

9

adjacency
list

1

2

3

vertex

empty
list

empty
list

list with pointers (or object references)
to vertex 4 and vertex 5

(here, list of vertices
to which there is an

outgoing edge)

367th December 2021CO2412

Graphs as data structures: Implementation

Instead of singly list data structures, doubly linked data structures can also be
used; e.g., with an additional adjacency list pointing to predecessor nodes.

0

1

2

3

4

5

7

8

6

sparse graphs with
labelled vertices

vertex

0

label next

9

adjacency
lists

prev

1

2

3
7

9

377th December 2021CO2412

Graphs as data structures: Implementation

For adjacency lists or incidence lists, a variety of data structures can be used,
e.g., dynamic arrays. They need not be sequential data structures.

0

1

2

3

4

5

7

8

6

a

a

aa

a
a

b

b

d

sparse graphs with
labelled vertices and edges

vertex

3

label out

9

c
a

label

label

target

edge

edge

vertex 5

vertex 4

a

b

target

incidence
list

387th December 2021CO2412

Graphs as data structures: Implementation

For adjacency lists or incidence lists, a variety of data structures can be used,
e.g., dynamic arrays. They need not be sequential data structures.

0

1

2

3

4

5

7

8

6

a

a

aa

a
a

b

b

d

sparse graphs with
labelled vertices and edges

vertex

3

label out

9

c
a

label

label

target

edge

edge

vertex 5

vertex 4

a

b

target

incidence
list

(here, list of outgoing
edges to which the
vertex is incident)

397th December 2021CO2412

Graphs as data structures: Implementation

Instead of singly list data structures, the corresponding doubly linked alterna-
tives can always be used; e.g., with links to source nodes and incoming edges.

0

1

2

3

4

5

7

8

6

a

a

aa

a
a

b

b

d

sparse graphs with
labelled vertices and edges

vertex

3

label outin

9

c
a

label

label

source

target

target

source

edge

edge

vertex 5

vertex 4

vertex 0

edge

source

label

a

b

a

target

407th December 2021CO2412

Graphs as data structures: Implementation

Matrix-like data structures in Python include lists of lists (i.e., 2D dynamic
arrays), if the numpy library is used, two-dimensional static arrays. For graphs,
the most relevant data structure of this type is the adjacency matrix.

0

1

2

3

4

adj = [[0, 1, 1, 0, 0],

[0, 0, 0, 1, 0],

[1, 1, 0, 0, 0],

[0, 1, 1, 0, 0],

[1, 0, 1, 0, 0]]

edge from 2 to 1

no edge
from 3 to 4

adj[2][1] = 1, or True

adj[3][4] = 0, or False

417th December 2021CO2412

Graphs as data structures: Implementation

Matrix-like data structures in Python include lists of lists (i.e., 2D dynamic
arrays), if the numpy library is used, two-dimensional static arrays. For graphs,
the most relevant data structure of this type is the adjacency matrix.

For a sparse graph, the vast majority of entries in the 2D array/matrix is zero.
Adjacency matrices are commonly only used when expecting a dense graph.

0

1

2

3

4

adj = [[0, 1, 1, 0, 0],

[0, 0, 0, 1, 0],

[1, 1, 0, 0, 0],

[0, 1, 1, 0, 0],

[1, 0, 1, 0, 0]]

out of node 0

out of node 1

out of node 2

out of node 3

Where opportunity creates success

CO2412
Computational Thinking

Tutorial problems
Implementing graph data structures

