University of

Central Lancashire UCLan

CO2412
 Computational Thinking

Review of module parts 1 to 3
End-of-year reflection
Tutorial 2.3 discussion

Where opportunity creates success

Review of module parts 1 to 3

Module structure

Upon successful completion of this module, a student will be able to:

1) Use methods including logic and probability to reason about algorithms and data structures;
2) Compare, select, and justify algorithms and data structures for a given problem;
3) Analyse the computational complexity of problems and the efficiency of algorithms;
4) Use a range of notations to represent and analyse problems;
5) Implement and test algorithms and data structures.
program
analysis algorithm design
graphs and trees logic languages
randomness
and probability

Part 1: Program analysis

On the topic of program analysis, we have:

- Considered the space (memory) and time efficiency of algorithms;
- Described asymptotic scaling behaviour using Landau $O(n)$ notation;
- Analysed algorithms formally via pre-/postconditions of statements.

Part 1: Program analysis

On the topic of program analysis, we have:

- Considered the space (memory) and time efficiency of algorithms;
- Described asymptotic scaling behaviour using Landau $O(n)$ notation;
- Analysed algorithms formally via pre-/postconditions of statements. common efficiency classes:
iteration vs. recursion
program flow graphs time \& space efficiency

Landau ("big O") notation
constant, O(1)
linear, $\mathrm{O}(n)$
O($n \log n$)
quadratic, $O\left(n^{2}\right)$

Part 2: Algorithm design

On the topic of algorithm design, we have:

- Compared and applied algorithm design strategies such as recursion, divide-and-conquer, greedy algorithms, dynamic programming;
- Looked at common data structures and their specification and implementation;
- Applied algorithm design to sorting as a highly relevant use case.

Part 2: Algorithm design

On the topic of algorithm design, we have:

- Compared and applied algorithm design strategies such as recursion, divide-and-conquer, greedy algorithms, dynamic programming;
- Looked at common data structures and their specification and implementation;
- Applied algorithm design to sorting as a highly relevant use case.
algorithm design strategies:
brute-force algorithms greedy algorithms divide and conquer dynamic programming
sequential data structures:
(static) array
dynamic array
singly linked list
doubly linked list

Sorting algorithms: Selection sort

Selection sort: Greedy algorithm

Sorting algorithm that keeps selecting the smallest remaining element:

Test list: $[35,16,58,3,11,106,15,55,7,81,1]$

$$
\begin{aligned}
\text { Step 1: }[1] & \rightarrow \text { Step 2: }[1,3] \rightarrow \text { Step 3: }[1,3,7] \rightarrow \text { Step } 4:[1,3,7,11] \\
& \rightarrow \text { Step } 5:[1,3,7,11,15] \rightarrow \text { Step } 6:[1,3,7,11,15,16] \rightarrow \ldots \\
& \rightarrow \text { Step } 11:[1,3,7,11,15,16,35,55,58,81,106]
\end{aligned}
$$

Sorting algorithms: Insertion sort

Insertion sort: Greedy algorithm

Sorting algorithm that keeps inserting the next element into a sorted list:

Test list: $[35,16,58,3,11,106,15,55,7,81,1]$

Step 1: $[35] \rightarrow$ Step 2: $[16,35] \rightarrow$ Step 3: $[16,35,58] \rightarrow$ Step 4: $[3,16,35,58]$
\rightarrow Step 5: $[3,11,16,35,58] \rightarrow$ Step 6: $[3,11,16,35,58,106] \rightarrow \ldots$
\rightarrow Step 11: $[1,3,7,11,15,16,35,55,58,81,106]$

Sorting algorithms: Mergesort

Mergesort: Divide-and-conquer algorithm
sublist_size = 1
$\underline{20} \underline{22} 48911052607958987$ 202248911052607958987

202248911052607958987 202248911052607958987
$2022489 \underline{110} \underline{52} 607958987$
$2022489 \underline{52 \quad 110} 607958987$
202248952110 60 79 58987 202248952110607958987
$2022489521106079 \underline{58} \underline{9} 87$ $2022489521106079 \underline{9} 5887$

202248952110607995887

```
    sublist_size = 2
    20 22 4 89 52 110 60 79 9 58 87
    4 202289521106079958 87
    4 20 22 89 52 110 60 79 9 58 87
    4 20 22 89 52 60 79 110 9 58 87
    4 20 22 89 52 60 79 110 9 58 87
4 20 22 89 52 60 79 110 9 58 87
    sublist_size = 4
4 20 22 89 52 60 79 110 9 58 87
4 20 2252 6079 89 100 9 58 87
4202252 60 79 89 100 9 58 87
    sublist_size = 8
4 20 22 52 60 79 89 100 9 58 87
492022525860798789100
```


Sorting algorithms: Performance

Part 2: Algorithm design

Revising the concepts

What is the difference between dynamic programming and divide-and conquer?

Part 3: Graphs and trees

On the topic of graphs and trees, we have:

- Introduced graph theory and its basic definitions and concepts, including trees as a special case;
- Addressed basic tasks/problems when dealing with graphs, e.g., computing shortest paths, strategies for graph traversal, and the application of trees to sorting and searching;
- Discussed numerical representations of graphs as data structures.

Fig. from R. Jackendoff, Patterns in the Mind (Italian translation).

Part 3: Graphs and trees

On the topic of graphs and trees, we have:

- Introduced graph theory and its basic definitions and concepts, including trees as a special case;
- Addressed basic tasks/problems when dealing with graphs, e.g., computing shortest paths, strategies for graph traversal, and the application of trees to sorting and searching;
- Discussed numerical representations of graphs as data structures.
binary search
binary search tree
balanced tree
graph
traversal
spanning tree
adjacency list
incidence list
adjacency matrix

Part 3: Graphs and trees

Trees as a special kind of graph, and graphs as a generalization of trees

Definition ("tree"; in the literature, also: "out-tree" or "rooted tree") A tree is a graph with a root and a unique path from the root to each node.

Graphs as data structures: Implementation

Neighbour lists, implemented as adjacency or incidence lists, are most suitable for sparse graphs. Matrix-like data structures are best for dense graphs.
dense graphs

sparse graphs

Graphs as data structures: Implementation

Remark: This construction is particularly suitable for tree data structures, since trees are sparse graphs (in-degree ≤ 1), and they normally contain data items.

Graphs as data structures: Implementation

For adjacency lists or incidence lists, a variety of data structures can be used, e.g., dynamic arrays. They need not be sequential data structures.

Graphs as data structures: Implementation

Matrix-like data structures in Python include lists of lists (i.e., 2D dynamic arrays), if the numpy library is used, two-dimensional static arrays. For graphs, the most relevant data structure of this type is the adjacency matrix.

$$
\left.\begin{array}{rl}
\operatorname{adj}=\left[\begin{array}{lllll}
{[0,} & 1, & 1, & 0, & 0
\end{array}\right], \\
& {\left[\begin{array}{llll}
{[0,} & 0, & 0, & 1,
\end{array}\right.} \\
& {\left[\begin{array}{llll}
1, & 1, & 0, & 0,
\end{array}\right.} \\
& {\left[\begin{array}{llll}
0, & 1, & 1, & 0,
\end{array}\right.} \\
& {\left[\begin{array}{llll}
1, & 0, & 1, & 0,
\end{array}\right]} \\
& \operatorname{adj}[2][1]=1, \text { or True }
\end{array}\right],
$$

Graphs as data structures: Implementation

Matrix-like data structures in Python include lists of lists (i.e., 2D dynamic arrays), if the numpy library is used, two-dimensional static arrays. For graphs, the most relevant data structure of this type is the adjacency matrix.

$$
\begin{aligned}
& \text { adj }=\left[\begin{array}{llll}
{[0,} & 1, & 1, & 0,
\end{array}\right] \text {, out of node } 0 \\
& {[0,0,0,1,0] \text {, out of node } 1} \\
& {[1,1,0,0,0] \text {, out of node } 2} \\
& \text { [0, 1, 1, 0, 0], out of node } 3 \\
& [1,0,1,0,0] \quad]
\end{aligned}
$$

For a sparse graph, the vast majority of entries in the 2D array/matrix is zero. Adjacency matrices are commonly only used when expecting a dense graph.

Part 3: Graphs and trees

Revising the concepts

We define a tree to be a graph with:

- one unique root node;
- one unique path from the root node to each node.

Assume that in a graph there is a node with two incoming edges.
Why is it impossible that such a graph is a tree?

End-of-year reflection

Help improve the module for the coming year

Tutorial 2.3 discussion

Problem 2.3.1: Performance of doubly linked lists

A list with n elements is given.

Iterate over the whole list, and for each element:

- If it is a multiple of 3 , delete it from the list;
- If it has a remainder of 1 upon division by three, do nothing;
- If it has a remainder of 2 , insert a copy of the element right next to it.

In this way, e.g., $[19,12,20,12,4]$ is modified to become [19, 20, 20, 4].

Problem 2.3.1: Performance of doubly linked lists

In a singly linked list, each node contains a data item and a reference (or pointer) to the next node. This facilitates traversal in one direction, namely forward, and inserting a new data item after any given node, in constant time.

Singly linked lists require two variables per data item (item and next).

Problem 2.3.1: Performance of doubly linked lists

In a doubly linked list, each node additionally contains a reference to the previous node. This facilitates traversal in both directions and inserting a new data item before any given node (rather than only after it), all in constant time.

Singly linked lists require two variables per data item (item and next).
Doubly linked lists require three variables per data item (prev, item, and next).

Problem 2.3.1: Performance of doubly linked lists

Problem 2.3.2: Dantzig's algorithm

Greedy algorithm for the knapsack problem:

- There is a limited capacity c.
- Loadable items each have a weight $w[i]$ and a value $v[i]$.
- Dantzig's algorithm selects them in descending order of $v[i] / w[i]$.
- The algorithm terminates when no more items fit into the capacity.

The question was: Does this algorithm always determine the best solution?

capacity 8

weight 5

weight 4

$$
\text { value } 3
$$

Problem 2.3.2: Dantzig's algorithm

Greedy algorithm for the knapsack problem:

- There is a limited capacity c.
- Loadable items each have a weight $w[i]$ and a value $v[i]$.
- Dantzig's algorithm selects them in descending order of $v[i] / w[i]$.
- The algorithm terminates when no more items fit into the capacity.

The question was: Does this algorithm always determine the best solution?

capacity 8

20/5 = 4	12/4 = 3	12/4 = 3	$3 / 3=1$
value 20	value 12	value 12	value 3
weight 5	weight 4	weight 4	weight 3
CO 2412	$14^{\text {th }}$ De		30

Problem 2.3.2: Dantzig's algorithm

Greedy algorithm for the knapsack problem:

- There is a limited capacity c.
- Loadable items each have a weight $w[i]$ and a value $v[i]$.
- Dantzig's algorithm selects them in descending order of $v[i] / w[i]$.
- The algorithm terminates when no more items fit into the capacity.

The question was: Does this algorithm always determine the best solution?

capacity 8
Optimal solution, not found by Dantzig's algorithm:

value 12 value 12	total cargo value: $\mathbf{2 4}$
capacity 8	

University of

Central Lancashire UCLan

CO2412
 Computational Thinking

Review of module parts 1 to 3
End-of-year reflection
Tutorial 2.3 discussion

Where opportunity creates success

