
Where opportunity creates success

CO2412
Computational Thinking

Review of module parts 1 to 3
End-of-year reflection
Tutorial 2.3 discussion

14th December 2021CO2412

Review of module
parts 1 to 3

314th December 2021CO2412

Module structure

Upon successful completion of this module, a student will be able to:

1) Use methods including logic and probability to reason about
algorithms and data structures;

2) Compare, select, and justify algorithms and data structures for a given
problem;

3) Analyse the computational complexity of problems and the efficiency
of algorithms;

4) Use a range of notations to represent and analyse problems;
5) Implement and test algorithms and data structures.

program
analysis

randomness
and probability

logic

algorithm
design graphs

and trees
formal

languages

complexity

414th December 2021CO2412

Part 1: Program analysis

On the topic of program analysis, we have:

– Considered the space (memory) and time efficiency of algorithms;

– Described asymptotic scaling behaviour using Landau O(n) notation;

– Analysed algorithms formally via pre-/postconditions of statements.

514th December 2021CO2412

Part 1: Program analysis

On the topic of program analysis, we have:

– Considered the space (memory) and time efficiency of algorithms;

– Described asymptotic scaling behaviour using Landau O(n) notation;

– Analysed algorithms formally via pre-/postconditions of statements.

time & space efficiency

Landau (“big O”) notation

program flow graphs

iteration vs. recursion constant, O(1)

linear, O(n)

O(n log n)

quadratic, O(n2)

common efficiency classes:

614th December 2021CO2412

Part 2: Algorithm design

On the topic of algorithm design, we have:

– Compared and applied algorithm design strategies such as recursion,
divide-and-conquer, greedy algorithms, dynamic programming;

– Looked at common data structures and their specification and
implementation;

– Applied algorithm design to sorting as a highly relevant use case.

714th December 2021CO2412

Part 2: Algorithm design

On the topic of algorithm design, we have:

– Compared and applied algorithm design strategies such as recursion,
divide-and-conquer, greedy algorithms, dynamic programming;

– Looked at common data structures and their specification and
implementation;

– Applied algorithm design to sorting as a highly relevant use case.

divide and conquer

dynamic programming

greedy algorithms

brute-force algorithms (static) array

dynamic array

singly linked list

doubly linked list

algorithm design strategies: sequential data structures:

814th December 2021CO2412

Sorting algorithms: Selection sort

Selection sort: Greedy algorithm

Sorting algorithm that keeps selecting the smallest remaining element:

Test list: [35, 16, 58, 3, 11, 106, 15, 55, 7, 81, 1]

Step 1: [1] Step 2: [1, 3] Step 3: [1, 3, 7] Step 4: [→ → → 1, 3, 7, 11]

 → Step 5: [1, 3, 7, 11, 15] Step 6: [1, 3, 7, 11, 15, 16→] …→

 → Step 11: [1, 3, 7, 11, 15, 16, 35, 55, 58, 81, 106]

914th December 2021CO2412

Sorting algorithms: Insertion sort

Insertion sort: Greedy algorithm

Sorting algorithm that keeps inserting the next element into a sorted list:

Test list: [35, 16, 58, 3, 11, 106, 15, 55, 7, 81, 1]

Step 1: [35] Step 2: [16, 35] Step 3: [16, 35, 58] Step 4: [3, 16, 35, 58]→ → →

 → Step 5: [3, 11, 16, 35, 58] Step 6: [→ 3, 11, 16, 35, 58, 106] …→

 → Step 11: [1, 3, 7, 11, 15, 16, 35, 55, 58, 81, 106]

1014th December 2021CO2412

Sorting algorithms: Mergesort

Mergesort: Divide-and-conquer algorithm

20 22 4 89 52 110 60 79 9 58 87

4 20 22 89 52 110 60 79 9 58 87

4 20 22 89 52 110 60 79 9 58 87

4 20 22 89 52 60 79 110 9 58 87

4 20 22 89 52 60 79 110 9 58 87

4 20 22 89 52 60 79 110 9 58 87

4 20 22 89 52 60 79 110 9 58 87

4 20 22 52 60 79 89 100 9 58 87

4 20 22 52 60 79 89 100 9 58 87

4 20 22 52 60 79 89 100 9 58 87

4 9 20 22 52 58 60 79 87 89 100

sublist_size = 2

sublist_size = 4

sublist_size = 8

20 22 4 89 110 52 60 79 58 9 87

20 22 4 89 110 52 60 79 58 9 87

20 22 4 89 110 52 60 79 58 9 87

20 22 4 89 110 52 60 79 58 9 87

20 22 4 89 110 52 60 79 58 9 87

20 22 4 89 52 110 60 79 58 9 87

20 22 4 89 52 110 60 79 58 9 87

20 22 4 89 52 110 60 79 58 9 87

20 22 4 89 52 110 60 79 58 9 87

20 22 4 89 52 110 60 79 9 58 87

20 22 4 89 52 110 60 79 9 58 87

sublist_size = 1

1114th December 2021CO2412

Sorting algorithms: Performance

insertion sort + binary search

simple insertion sortselection sort

mergesort
O(n log n)

O(n2)

O(n2)

O(n2)

1214th December 2021CO2412

1

Part 2: Algorithm design

What is the difference between dynamic programming and divide-and conquer?

Revising the concepts

12

1183

4
9

[1][4][9]

[]
16

2 4 7 10

1

[9, 1]

4, 9, 16

[1, 1]

1

4

9, 16

[4, 4]

9

4 1

4[9, 1] [4, 1]

16

1314th December 2021CO2412

Part 3: Graphs and trees

On the topic of graphs and trees, we have:

– Introduced graph theory and its basic definitions and concepts,
including trees as a special case;

– Addressed basic tasks/problems when dealing with graphs, e.g.,
computing shortest paths, strategies for graph traversal, and the
application of trees to sorting and searching;

– Discussed numerical representations of graphs as data structures.

Fig. from R. Jackendoff,
Patterns in the Mind
(Italian translation).

1414th December 2021CO2412

Part 3: Graphs and trees

On the topic of graphs and trees, we have:

– Introduced graph theory and its basic definitions and concepts,
including trees as a special case;

– Addressed basic tasks/problems when dealing with graphs, e.g.,
computing shortest paths, strategies for graph traversal, and the
application of trees to sorting and searching;

– Discussed numerical representations of graphs as data structures.

binary search

binary search tree

balanced tree

adjacency list

incidence list

adjacency matrix

graph

traversal

spanning tree

1514th December 2021CO2412

Part 3: Graphs and trees

Trees as a special kind of graph, and graphs as a generalization of trees

graphtree (a kind of graph)

diamond

cycle cycle

unique
root

Definition (“tree”; in the literature, also: “out-tree” or “rooted tree”)

A tree is a graph with a root and a unique path from the root to each node.

unique path
to node

1614th December 2021CO2412

Graphs as data structures: Implementation

Neighbour lists, implemented as adjacency or incidence lists, are most suita-
ble for sparse graphs. Matrix-like data structures are best for dense graphs.

sparse graphsdense graphs

comparably
many edges

comparably
few edges

1714th December 2021CO2412

Graphs as data structures: Implementation

Remark: This construction is particularly suitable for tree data structures, since
trees are sparse graphs (in-degree ≤ 1), and they normally contain data items.

0

1

2

3

4

5

7

8

6

0

label next

9

adjacency
list

1

2

3

vertex

empty
list

empty
list

list with pointers (or object references)
to vertex 4 and vertex 5

(list of vertices to which
there is an edge)

1814th December 2021CO2412

Graphs as data structures: Implementation

For adjacency lists or incidence lists, a variety of data structures can be used,
e.g., dynamic arrays. They need not be sequential data structures.

0

1

2

3

4

5

7

8

6

a

a

aa

a
a

b

b

d

vertex

3

label out

9

c
a

label

label

target

edge

edge

vertex 5

vertex 4

a

b

target

(list of edges to which
the vertex is incident)

incidence
list

1914th December 2021CO2412

Graphs as data structures: Implementation

Matrix-like data structures in Python include lists of lists (i.e., 2D dynamic
arrays), if the numpy library is used, two-dimensional static arrays. For graphs,
the most relevant data structure of this type is the adjacency matrix.

0

1

2

3

4

adj = [[0, 1, 1, 0, 0],

[0, 0, 0, 1, 0],

[1, 1, 0, 0, 0],

[0, 1, 1, 0, 0],

[1, 0, 1, 0, 0]]

edge from 2 to 1

no edge
from 3 to 4

adj[2][1] = 1, or True

adj[3][4] = 0, or False

2014th December 2021CO2412

Graphs as data structures: Implementation

Matrix-like data structures in Python include lists of lists (i.e., 2D dynamic
arrays), if the numpy library is used, two-dimensional static arrays. For graphs,
the most relevant data structure of this type is the adjacency matrix.

For a sparse graph, the vast majority of entries in the 2D array/matrix is zero.
Adjacency matrices are commonly only used when expecting a dense graph.

0

1

2

3

4

adj = [[0, 1, 1, 0, 0],

[0, 0, 0, 1, 0],

[1, 1, 0, 0, 0],

[0, 1, 1, 0, 0],

[1, 0, 1, 0, 0]]

out of node 0

out of node 1

out of node 2

out of node 3

2114th December 2021CO2412

Part 3: Graphs and trees

We define a tree to be a graph with:
– one unique root node;
– one unique path from the root node to each node.

Assume that in a graph there is a node with two incoming edges.

Why is it impossible that such a graph is a tree?

Revising the concepts

A

B C

14th December 2021CO2412

End-of-year reflection

2314th December 2021CO2412

Help improve the module for the coming year

https://www.menti.com/ with code 1343 4857

https://www.menti.com/

14th December 2021CO2412

Tutorial 2.3 discussion

2514th December 2021CO2412

Problem 2.3.1: Performance of doubly linked lists

A list with n elements is given.

Iterate over the whole list, and for each element:

– If it is a multiple of 3, delete it from the list;
– If it has a remainder of 1 upon division by three, do nothing;
– If it has a remainder of 2, insert a copy of the element right next to it.

In this way, e.g., [19, 12, 20, 12, 4] is modified to become [19, 20, 20, 4].

2614th December 2021CO2412

Problem 2.3.1: Performance of doubly linked lists

In a singly linked list, each node contains a data item and a reference (or
pointer) to the next node. This facilitates traversal in one direction, namely
forward, and inserting a new data item after any given node, in constant time.

Singly linked lists require two variables per data item (item and next).

1

item next

12

item next

7

item next

head tail

None

2714th December 2021CO2412

Problem 2.3.1: Performance of doubly linked lists

In a doubly linked list, each node additionally contains a reference to the
previous node. This facilitates traversal in both directions and inserting a new
data item before any given node (rather than only after it), all in constant time.

Singly linked lists require two variables per data item (item and next).
Doubly linked lists require three variables per data item (prev, item, and next).

1

item nextprev

12

item nextprev

7

item nextprev

head tail

None
None

2814th December 2021CO2412

Problem 2.3.1: Performance of doubly linked lists

For technical implementation details, and
the performance measurement, see the
linked-list-performance Jupyter Notebook.

Python lis
t

singly linked list

doubly linked list

2914th December 2021CO2412

Problem 2.3.2: Dantzig’s algorithm

Greedy algorithm for the knapsack problem:

– There is a limited capacity c.
– Loadable items each have a weight w[i] and a value v[i].
– Dantzig’s algorithm selects them in descending order of v[i] / w[i].
– The algorithm terminates when no more items fit into the capacity.

The question was: Does this algorithm always determine the best solution?

capacity 8

weight 5 weight 3

value 20 value 3

weight 4 weight 4

value 12 value 12

3014th December 2021CO2412

Problem 2.3.2: Dantzig’s algorithm

Greedy algorithm for the knapsack problem:

– There is a limited capacity c.
– Loadable items each have a weight w[i] and a value v[i].
– Dantzig’s algorithm selects them in descending order of v[i] / w[i].
– The algorithm terminates when no more items fit into the capacity.

The question was: Does this algorithm always determine the best solution?

capacity 8

weight 5 weight 4 weight 4 weight 3

value 20 value 12 value 12 value 3

20/5 = 4 12/4 = 3 12/4 = 3 3/3 = 1

value 20 value 3
total cargo
value: 23

3114th December 2021CO2412

Problem 2.3.2: Dantzig’s algorithm

Greedy algorithm for the knapsack problem:

– There is a limited capacity c.
– Loadable items each have a weight w[i] and a value v[i].
– Dantzig’s algorithm selects them in descending order of v[i] / w[i].
– The algorithm terminates when no more items fit into the capacity.

The question was: Does this algorithm always determine the best solution?

capacity 8

value 20 value 3

Optimal solution, not found
by Dantzig’s algorithm:

capacity 8

total cargo
value: 24

total cargo
value: 23

value 12 value 12

Where opportunity creates success

CO2412
Computational Thinking

Review of module parts 1 to 3
End-of-year reflection
Tutorial 2.3 discussion

