
Where opportunity creates success

CO2412
Computational Thinking

Tutorial 3.1 discussion
Shortest paths
Travelling salesman



218th January 2022CO2412

Updated structure of the module

Upon successful completion of this module, a student will be able to:

1) Use methods including logic and probability to reason about 
algorithms and data structures;

2) Compare, select, and justify algorithms and data structures for a given 
problem;

3) Analyse the computational complexity of problems and the efficiency 
of algorithms;

4) Use a range of notations to represent and analyse problems;
5) Implement and test algorithms and data structures.

program 
analysis

randomness 
and probability

algorithm 
design graphs 

and trees

logic and
complexity



318th January 2022CO2412

Assessment update: Template document



18th January 2022CO2412

Tutorial 3.1 discussion



518th January 2022CO2412

Deleting an element from a binary search tree

Example task

Delete 4 from the tree:
– Replace the label 

of node a, which is 
initially 4, with 3

Delete 11 from the tree:
– Replace the label 

of node c with 10

8

4

2

1

None0

3

5

None
6

None 7

11

1310

9
None

12
None

node a

node b

node c

node d

node e



618th January 2022CO2412

Deleting an element from a binary search tree

Example task

Delete 4 from the tree:
– Replace the label 

of node a, which is 
initially 4, with 3

– Then delete 3 from 
the subtree/node b

Delete 11 from the tree:
– Replace the label 

of node c with 10
– Then delete 10 

from node d, by 
writing 9 to node d 
and erasing node e

8

3

2

1

None0

5

None
6

None 7

13

10

9

None
12

None

node a

node b

node c

node d

None None



718th January 2022CO2412

Deleting an element from a binary search tree

See the Jupyter Notebook bst-with-deletion.

Method delete(self, value):

Is value smaller than self._item?
– If self._left is None, return
– self._left.delete(value)
– If self._left._item is now None, 

detach via self._left = None

Is value greater than self._item?
– If self._right is None, return
– self._right.delete(value)
– If self._right._item is now None, 

detach via self._right = None

self._item

self._left self._right



818th January 2022CO2412

Deleting an element from a binary search tree

See the Jupyter Notebook bst-with-deletion.

Is value the same as self._item?
And is self._left not None?

– Find the greatest element x from 
the left branch, set self._item = x

– Now, self._left.delete(x)
– If self._left._item is now None, 

detach via self._left = None

self._item

self._left self._right



918th January 2022CO2412

Deleting an element from a binary search tree

See the Jupyter Notebook bst-with-deletion.

Is value the same as self._item?
And is self._left None?
But is self._right not None?

– Find the smallst element x from 
the right branch, set self._item = x

– Now, self._right.delete(x)
– If self._right._item is now None, 

detach via self._right = None

self._item

self._left self._right

None



1018th January 2022CO2412

Deleting an element from a binary search tree

See the Jupyter Notebook bst-with-deletion.

Is value the same as self._item?
And is self a leaf?

– Delete value by setting
self._item = None

self._item

self._left self._right

None None



18th January 2022CO2412

Shortest paths



1218th January 2022CO2412

Graph traversal and spanning trees

DFS spanning tree

root 
node

BFS spanning tree

root 
node

A graph that is not a tree can be reduced to a tree by eliminating edges. Such 
a tree is called a spanning tree if it covers all nodes. When needed, this is of-
ten done by DFS or BFS, retaining only the edges followed for visiting nodes.

This construction is only feasible if there are paths to all nodes from the root.



1318th January 2022CO2412

Graph traversal and spanning trees

Traversal of trees and graphs: Depth-first search and breadth-first search

depth-first search (DFS)

0

12

3 4

5

67

8

9

0

1

2

3

4

5

7

9

8

6

begin
here

breadth-first search (BFS)

begin
here

DFS always proceeds from the most recently detected node (LIFO).
BFS always proceeds from the node that was detected earliest (FIFO).

Note: Only elements to which there is a path from the initial node can be found.



1418th January 2022CO2412

DFS and BFS spanning trees



1518th January 2022CO2412

DFS and BFS spanning trees

A

Z
O

S

T L

M

D C

R

P

B

G

U
H

E

V

I

N

F

root 
node



1618th January 2022CO2412

DFS spanning tree (also, “depth-first tree”)

A

Z
O

S

T L

M

D C

R

P

B

G

U
H

E

V

I

N

F

root 
node

1a
1b

1c

1d

1e

1f1g

1h

1i
1j

2a

2b

2c

2d

2e

3a

3b

4

5



1718th January 2022CO2412

BFS spanning tree (also, “breadth-first tree”)

A

Z
O

S

T L

M

D C

R

P

B

G

U
H

E

V

I

N

F

root 
node



1818th January 2022CO2412

BFS spanning tree (also, “breadth-first tree”)

A

Z
O

S

T L

M

D C

R

P

B

G

U
H

E

V

I

N

F

root 
node

1a

1b

1c

2a

2b

2c

2d

3a

3b

3c

3d



1918th January 2022CO2412

Shortest paths & distances from A to all other nodes

A

Z
O

S

T L

M

D C

R

P

B

G

U
H

E

V

I

N

F

root 
node

1a

1b

1c

2a

2b

2c

2d

3a

3b

3c

3d

4a

4b

4c

5a

6a

5b

6b

7b



2018th January 2022CO2412

Time efficiency: Shortest paths (unweighted graphs)

Unweighted directed graph with n nodes and e edges, where e ≤ n2.

O(1) time per edge, assuming a linked list is used for the queue and a list-like 
data structure (not an adjacency matrix) is used for adjacency/indicence data.
(With an adjacency matrix, O(n) time per node is required to find the edges.)

0

1

2

3

breadth-first search (BFS) Traversal algorithm, one iteration:

– visit present node

– detect nodes that can be 
reached directly from here
(if undetected so far), push 
them to a FIFO queue

– pop node from FIFO queue 
of detected nodes and 
proceed there

detect e

detect d

visit a

visit b

visit c push e

push d
pop c

pop b

pop a



2118th January 2022CO2412

Time efficiency: Shortest paths (unweighted graphs)

0

1

2

3

breadth-first search (BFS) Traversal algorithm, one iteration:

– visit present node

– detect nodes that can be 
reached directly from here
(if undetected so far), push 
them to a FIFO queue

– pop node from FIFO queue 
of detected nodes and 
proceed there

detect e

detect d

visit a

visit b

visit c push e

push d
pop c

pop b

pop a

Unweighted directed graph with n nodes and e edges, where e ≤ n2.

Overall O(e) time, where e is the number of edges, or O(n2) in the worst case.
For BFS beyond this use case, it is O(n + e), which is usually the same as O(e).
It also generally requires O(n2) time if an adjacency matrix is used.



2218th January 2022CO2412

0

1

2

3

4

5

6

7

8

1

1

11

1
1

2

2

4

From unweighted to weighted graphs

weighted graph unweighted graph

0

1

2

3

4

5

6

7

8

a

a

aa

a
a

b

b

d

The distance from 
node 5 to node 1 
is 3 (three edges).

The distance from 
node 5 to node 1 
is 6 (from 1+4+1).

In unweighted graphs, the distance between nodes is the number of edges.

In weighted graphs, distances between nodes are obtained from edge labels.



2318th January 2022CO2412

From unweighted to weighted graphs

0

1

2

3

4

5

7

8

6

a

a

aa

a
a

b

b

d

9

c
a

initial_label

search_label

BFS starting from node 5

0

1

2

3

4

5

7

8

6

a

a

aa

a
a

b
d

9
a

root node
depth 0

depth 1

depth 2
depth 3

depth 2

depth 3
depth 3

depth 4

BFS spanning tree with 
the root at node 5

For unweighted graphs, the shortest paths and distances from one node 
to all other nodes can be computed by breadth-first search (BFS).



2418th January 2022CO2412

From unweighted to weighted graphs

0

1

2

3

4

5

7

8

6

a

a

aa

a
a

b

b

d

9

c
a

initial_label

search_label

BFS starting from node 5

0

1

2

3

4

5

7

8

6

a

a

aa

a
a

b
d

9
a

root node
depth 0

depth 1

depth 2
depth 3

depth 2

depth 3
depth 3

depth 4

BFS spanning tree with 
the root at node 5

Features of the algorithm:

It is greedy. The spanning tree is constructed node by node, until complete.
Every time a node is added to the tree, we are sure to know the shortest path.



2518th January 2022CO2412

Weighted graphs: Dijkstra’s algorithm

A

Z
O

S

T L

M

D C

R

P

B

G

U
H

E

V

I

N

F

root 
node

8

7

15

14

812

11

12

7

8

12

14

15

10

10

10

21

9

48

918

9
9

10

14

14

9

9

Features of the algorithm:

It is greedy. The spanning tree is constructed node by node, until complete.
Every time a node is added to the tree, we are sure to know the shortest path.

Assumptions:

Undirected graph
All distances are positive

tentative 
distance 12, 

coming from A

tentative 
distance 8, 

coming from A tentative 
distance 14, 

coming from A



2618th January 2022CO2412

Weighted graphs: Dijkstra’s algorithm

A

Z
O

S

T L

M

D C

R

P

B

G

U
H

E

V

I

N

F

root 
node

8

7

15

14

812

11

12

7

8

12

14

15

10

10

10

21

9

48

918

9
9

10

14

14

9

9

Features of the algorithm:

It is greedy. The spanning tree is constructed node by node, until complete.
Every time a node is added to the tree, we are sure to know the shortest path.

tentative 
distance 12, 

coming from A

distance 8

tentative 
distance 14, 

coming from A

tentative 
distance 15, 

coming from Z

tentative 
distance 20, 

coming from Z



2718th January 2022CO2412

Weighted graphs: Dijkstra’s algorithm

A

Z
O

S

T L

M

D C

R

P

B

G

U
H

E

V

I

N

F

root 
node

8

7

15

14

812

11

12

7

8

12

14

15

10

10

10

21

9

48

918

9
9

10

14

14

9

9

distance 12

distance 8

tentative 14, 
from A

tentative 15, 
from Z

tentative 20, 
from Z

tentative 23, 
from T



2818th January 2022CO2412

Weighted graphs: Dijkstra’s algorithm

A

Z
O

S

T L

M

D C

R

P

B

G

U
H

E

V

I

N

F

root 
node

8

7

15

14

812

11

12

7

8

12

14

15

10

10

10

21

9

48

918

9
9

10

14

14

9

9

dist. 12

dist. 8

dist. 14

15? via Z

20? via Z23? via T

24? via S

29 via S

22 via S



2918th January 2022CO2412

Weighted graphs: Dijkstra’s algorithm

A

Z
O

S

T L

M

D C

R

P

B

G

U
H

E

V

I

N

F

root 
node

8

7

15

14

812

11

12

7

8

12

14

15

10

10

10

21

9

48

918

9
9

10

14

14

9

9

dist. 12

dist. 8

dist. 14

dist. 15

dist. 20dist. 23

dist. 30

dist. 24

dist. 30

72? via F

38? via F

40? via P

32? via L38? via M

Discussion:

What happens next?



3018th January 2022CO2412

Weighted graphs: Dijkstra’s algorithm

A

Z
O

S

T L

M

D C

R

P

B

G

U
H

E

V

I

N

F

root 
node

8

7

15

14

812

11

12

7

8

12

14

15

10

10

10

21

9

48

9
18

9 9

10

14

14

9

9

dist. 12

dist. 8

dist. 14

dist. 15

dist. 20dist. 23

dist. 30

dist. 24

dist. 30

dist. 72

dist. 38

dist. 32dist. 38

dist. 40

dist. 49
dist. 47

dist. 48

dist. 62

dist. 71

In each iteration, visit the de-
tected node closest to the root.

Process all edges to which that 
node is incident, detecting any 
undetected neighbours, and 
updating tentative distances.



18th January 2022CO2412

Travelling salesman



3218th January 2022CO2412

The travelling salesman problem (TSP)

A

Z
O

S

T L R

8

7

15

14

812

11
11

12
7

15

Scenario:

A travelling salesman needs to visit all 
the cities, by a path that ends at the 
same city where it starts (a cycle).

No city may be visited twice. Every 
city must be visited exactly once. 
(Except for returning to the start.)

The total travel distance, that is, the 
total length of the path, must be as 
short as possible.



3318th January 2022CO2412

The travelling salesman problem (TSP)

A

Z
O

S

T L R

8

7

15

14

812

11
11

12
7

15

Scenario:

A travelling salesman needs to visit all 
the cities, by a path that ends at the 
same city where it starts (a cycle).

No city may be visited twice. Every 
city must be visited exactly once. 
(Except for returning to the start.)

The total travel distance, that is, the 
total length of the path, must be as 
short as possible.

Discussion:

The cycle highlighted above has the 
length 8+7+15+8+11+11+12 = 72. 
Find an alternative route. How long is it?

A
Z
O
S
R
L
T
A

72



3418th January 2022CO2412

The travelling salesman problem (TSP)

Scenario:

A travelling salesman needs to visit all 
the cities, by a path that ends at the 
same city where it starts (a cycle).

No city may be visited twice. Every 
city must be visited exactly once. 
(Except for returning to the start.)

The total travel distance, that is, the 
total length of the path, must be as 
short as possible.

Discussion:

How many cycles covering all nodes 
are there in a complete graph with n 
nodes, that is a graph where every 
node is adjacent to every other node?

How long would it then take to solve 
the TSP by a brute force algorithm?

Example:
n = 6

start and 
end point



3518th January 2022CO2412

The travelling salesman problem (TSP)

Scenario:

A travelling salesman needs to visit all 
the cities, by a path that ends at the 
same city where it starts (a cycle).

No city may be visited twice. Every 
city must be visited exactly once. 
(Except for returning to the start.)

The total travel distance, that is, the 
total length of the path, must be as 
short as possible.

 

How many cycles covering all nodes 
might there be at most in a graph of 
n nodes, having maximum degree k, 
that is a graph where every node is 
adjacent to at most k other nodes?

How long would it then take to solve 
the TSP by a brute force algorithm?

Example:
n = 6
k = 3

start and 
end point



3618th January 2022CO2412

The travelling salesman problem (TSP)

Discussion:

The initial node is given.

For the next node there are at most k 
options. The same (in the worst case) 
for the node after that, and in each 
following step, at least as an upper 
bound. We need to visit n–1 nodes 
other than the initial node.

Upper bound: k · k · … · k = kn–1 paths, 
with O(n) time per path to construct 
and compute the length of a path.

O(n·kn–1) time, or in slight abuse of 
notation kO(n) time, “exponential time.”

 

How many cycles covering all nodes 
might there be at most in a graph of 
n nodes, having maximum degree k, 
that is a graph where every node is 
adjacent to at most k other nodes?

How long would it then take to solve 
the TSP by a brute force algorithm?

Example:
n = 6
k = 3

start and 
end point



Where opportunity creates success

CO2412
Computational Thinking

Tutorial 3.1 discussion
Shortest paths
Travelling salesman


