
Where opportunity creates success

CO2412
Computational Thinking

Logical operators
Truth tables

225th January 2022CO2412

What do you associate with “Logic”?

25th January 2022CO2412

Logical operators

425th January 2022CO2412

Boolean expressions in programming

Boolean variables

p = True
q = (i < j)
r = False

Control flow

if q:
 …
else:
 …

while (p and q and not r):
 …

In Python: False/True, but also 0/1, etc.

Similar in C/C++ and Java (false, true, 0, 1, …)

Python: and, or, not.

Languages closer to C: &&, ||, !

525th January 2022CO2412

Propositional logic

Boolean variables

p = True
q = (i < j)
r = False

Control flow

if q:
 …
else:
 …

while (p and q and not r):
 …

Propositional logic is a standard way of
denoting Boolean expressions.

The equivalent of a Boolean variable in
propositional logic is an atomic statement.

Logical expressions that combine statements
(say, statements R, S) into one (say, “R and S,”
denoted R ∧ S) are composite statements.

The same Boolean operators are used as in
programming, but using a different notation:

∧ ∨¬
not and or

625th January 2022CO2412

Propositional logic

Negation (¬)

Logical not is a unary operator, it has
one argument. The negation of a

statement S is denoted ¬S.

¬S is True if S is False, and vice versa.

Disjunction (∨)

Logical or is a binary operator, it has
two arguments. The disjunction of two

statements R, S is denoted R ∨ S.

R ∨ S is False if both R and S are False,
otherwise R ∨ S is True.

¬p ∨ q means “not-p or q”

¬(p q), meaning “not (∨ p or q)”,
requires parentheses

(p ∨ q) ∨ r means the same as p (∨ q ∨ r)

we can then just write p ∨ q ∨ r

Precedence of operators:

Unary (negation) first, binary
(all the others) last. You must
use parentheses to indicate
the precedence of multiple

binary logical operators.

725th January 2022CO2412

Propositional logic

Negation (¬)

Logical not is a unary operator, it has
one argument. The negation of a

statement S is denoted ¬S.

¬S is True if S is False, and vice versa.

Disjunction (∨)

Logical or is a binary operator, it has
two arguments. The disjunction of two

statements R, S is denoted R ∨ S.

R ∨ S is False if both R and S are False,
otherwise R ∨ S is True.

Conjunction (∧)

Logical and is a binary operator. The
conjunction of two statements R, S is

denoted R ∧ S.

R ∧ S is True if both R and S are True,
otherwise R ∧ S is False.

Implication (→)

Logical implication (or conditionality)
is a binary operator. “R implies S” is

denoted R → S.

R → S is False if R is True and S is False,
otherwise it is True.

825th January 2022CO2412

Propositional logic

Implication (→)

Logical implication (or conditionality)
is a binary operator. “R implies S” is

denoted R → S.

R → S is False if R is True and S is False,
otherwise it is True.

Equivalence ()↔

Logical equivalence (or
biconditionality) is a binary operator.

“R equivalent S” is denoted R ↔ S.

R ↔ S is True if R and S have the same
truth value, otherwise it is False.

R → S

can be understood as
an abbreviation for

¬R ∨ S

or an abbreviation for

¬(R ∧ ¬S)

R ↔ S

can be understood as
an abbreviation for

(R → S) (∧ S → R)

or an abbreviation for

(R ∧ S) (¬∨ R ¬∧ S)

25th January 2022CO2412

Truth tables

1025th January 2022CO2412

I want this to make sense! Where are the examples?

We aim at being able to express statements from systems specifications, e.g.,

“The item is not handed to the customer unless a payment has been received.”

Propositional logic is rather weak, we will have to enrich it for this purpose and
look at stronger logics. This gives us only the very form of such statements.

But we might begin with:
– p defined by “the item is handed to the customer.”
– q defined by “the payment has been received.”

Then our statement might be expressed in propositional logic by p → q.

Using predicates, which we will look into later, this might become
HandoverItem(self, customer) PaymentDone(customer, self).→

in this form, the
actual content has
disappeared … :(

1125th January 2022CO2412

Semantics of propositional logic

Three branches of the theory of formal languages:

– Syntax (theory of the structure of language)
– Semantics (theory of the meaning of language)
– Pragmatics (theory of the use of language)

Generally speaking, semantics refers to “meaning,” as opposed to syntax,
which refers to “proper grammar and notation.”

Under many typical circumstances (particularly in computing), a code, formula,
statement, etc., can only have a semantic content if it has correct syntax.
However, human language pragmatics permits people to also make sense of
utterances that are not grammatically correct.

Just like statements in human language, logical statements use language(s).
They can be analysed in the same way, and so can programming languages.

1225th January 2022CO2412

Semantics of propositional logic

The semantics (meaning) of a propositional logic statement is given by the
valuations, truth value assignments for atomic statements, that make it true.

The straightforward way of expressing that is through a truth table:

p q p → q

False False True

False True True

True False False

True True True

“p implies q”

recall that p → q
can be rewritten as

¬p ∨ q

or also as

¬(p ¬∧ q)

Task: Determine
truth table for

(p → q) (∧ q ∨ r)

“p implies q”

“not-p or q”

“not (p and not-q)”

1325th January 2022CO2412

Semantics of propositional logic

The semantics (meaning) of a propositional logic statement is given by the
valuations, truth value assignments for atomic statements, that make it true.

The straightforward way of expressing that is through a truth table:

p q r p → q q ∨ r (p → q) (∧ q ∨ r)

False False False True False False
False False True True True True
False True False True True True
False True True True True True
True False False False False False
True False True False True False
True True False True True True
True True True True True True

“p implies q” “q or r” “(p implies q) and (q or r)”

1425th January 2022CO2412

Satisfiability

Typically, we would expect the truth value of a propositional logic statement to
depend on the valuation, i.e., on the truth values of its atomic statements.

But there are statements that can never become true. They are unsatisfiable.

p q r ¬(p → q) ¬(q → r) ¬(p → q) ¬(∧ q → r)

False False False False False False
False False True False False False
False True False False True False
False True True False False False
True False False True False False
True False True True False False
True True False False True False
True True True False False False

“not (p implies q)”

“not (q implies r)”

“not (p implies q)
and not (q implies r)”

1525th January 2022CO2412

Satisfiability

A statement is satisfiable if it has a model, that is, a valuation that makes it true.

Statements that never become true are called unsatisfiable or contradictions.
Statements that are always true and never become false are called tautologies.

p q r p → q q → r (p → q) ∨ (q → r)

False False False True True True
False False True True True True
False True False True False True
False True True True True True
True False False False True True
True False True False True True
True True False True False True
True True True True True True

“p implies q” “q implies r” “(p implies q) or (q implies r)”

1625th January 2022CO2412

Satisfiability and the square of opposition

A statement is satisfiable if it has a model, that is, a valuation that makes it true.

Statements that never become true are called unsatisfiable or contradictions.
Statements that are always true and never become false are called tautologies.

A statement is falsifiable if it there is a valuation that makes it false.
Statements that are both satisfiable and falsifiable are called contingent.

tautological
(unfalsifiable)

contradictory
(unsatisfiable)

satisfiable falsifiable

1725th January 2022CO2412

Satisfiability and the square of opposition

If a statement S is tautological, then its negation ¬S is contradictory.
– (p → q) (∨ q → r) is a tautology; so ¬((p → q) (∨ q → r)) is a contradiction.

The negation of “statement S is satisfiable” is “statement S is a contradiction.”
– (p ∨ q) (¬∧ p ¬∨ q) is satisfiable; therefore it is not a contradiction.

tautological
(unfalsifiable)

contradictory
(unsatisfiable)

satisfiable falsifiable

is not
(“complement”,

“outer negation”)
is also

(“subsumption”)
is also

(“subsumption”)

is opposite of
(“inner negation”)

is opposite of
(“inner negation”)

1825th January 2022CO2412

Satisfiability and the square of opposition

tautological
(unfalsifiable)

contradictory
(unsatisfiable)

satisfiable falsifiable

is not
is also

is opposite of

is opposite of

is not
is also

Where do the following propositional logic statements belong?

1. (p ∧ q) → p 2. p ↔ q 3. ¬(p ∨ ¬p)

– Are they contradictions (always false) or satisfiable (not always false)?
– Are they tautologies (always true) or falsifiable (not always true)?

“not (p or not-p)”“p equivalent q”“(p and q) implies p”

1925th January 2022CO2412

Help! Why logic? … will I ever need this?

You might, if …

– … you will need to formally verify programs or other systems not
manually, but by automated verification based on model checking;
• the conditions that are to be verified are usually statements

expressed in dedicated kinds of logics (such as temporal logic).

– … you would like to understand all the programming paradigms, not
only procedural and object-oriented programming;
• logic programming, for example in PROLOG, is its own paradigm.

– … you plan to develop semantic web applications, or if you would like
to use non-relational databases;
• the content of typical non-relational databases is given by

statements expressed in a special kind of logic – description logic.

2025th January 2022CO2412

Help! Why logic? … will I ever need this?

… or you might just as well never need it! (Except for the exam.)

Where opportunity creates success

CO2412
Computational Thinking

Logical operators
Truth tables

