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What do you associate with “Logic”?
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Logical operators
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Boolean expressions in programming

Boolean variables

p = True
q = (i < j)
r = False

Control flow

if q:
   …
else:
   …

while (p and q and not r):
   …

In Python: False/True, but also 0/1, etc.

Similar in C/C++ and Java (false, true, 0, 1, …)

Python: and, or, not.

Languages closer to C: &&, ||, !
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Propositional logic

Boolean variables

p = True
q = (i < j)
r = False

Control flow

if q:
   …
else:
   …

while (p and q and not r):
   …

Propositional logic is a standard way of 
denoting Boolean expressions.

The equivalent of a Boolean variable in 
propositional logic is an atomic statement.

Logical expressions that combine statements 
(say, statements R, S) into one (say, “R and S,” 
denoted R  ∧ S) are composite statements.

The same Boolean operators are used as in 
programming, but using a different notation:

∧ ∨¬
not and or
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Propositional logic

Negation (¬)

Logical not is a unary operator, it has 
one argument. The negation of a 

statement S is denoted ¬S.

¬S is True if S is False, and vice versa.

Disjunction (∨)

Logical or is a binary operator, it has 
two arguments. The disjunction of two 

statements R, S is denoted R  ∨ S.

R  ∨ S is False if both R and S are False, 
otherwise R  ∨ S is True.

¬p  ∨ q   means  “not-p or q”

¬(p  q), meaning “not (∨ p or q)”, 
requires parentheses

(p  ∨ q)  ∨ r means the same as p  (∨ q  ∨ r) 

we can then just write p  ∨ q  ∨ r

Precedence of operators:

Unary (negation) first, binary 
(all the others) last. You must 
use parentheses to indicate 
the precedence of multiple 

binary logical operators.
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Propositional logic

Negation (¬)

Logical not is a unary operator, it has 
one argument. The negation of a 

statement S is denoted ¬S.

¬S is True if S is False, and vice versa.

Disjunction (∨)

Logical or is a binary operator, it has 
two arguments. The disjunction of two 

statements R, S is denoted R  ∨ S.

R  ∨ S is False if both R and S are False, 
otherwise R  ∨ S is True.

Conjunction (∧)

Logical and is a binary operator. The 
conjunction of two statements R, S is 

denoted R  ∧ S.

R  ∧ S is True if both R and S are True, 
otherwise R  ∧ S is False.

Implication (→)

Logical implication (or conditionality) 
is a binary operator. “R implies S” is 

denoted R  → S.

R  → S is False if R is True and S is False, 
otherwise it is True.
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Propositional logic

Implication (→)

Logical implication (or conditionality) 
is a binary operator. “R implies S” is 

denoted R  → S.

R  → S is False if R is True and S is False, 
otherwise it is True.

Equivalence ( )↔

Logical equivalence (or 
biconditionality) is a binary operator. 

“R equivalent S” is denoted R  ↔ S.

R  ↔ S is True if R and S have the same 
truth value, otherwise it is False.

R  → S

can be understood as 
an abbreviation for

¬R  ∨ S

or an abbreviation for

¬(R ∧ ¬S)

R  ↔ S

can be understood as 
an abbreviation for

(R  → S)  (∧ S  → R)

or an abbreviation for

(R  ∧ S)  (¬∨ R  ¬∧ S)
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Truth tables
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I want this to make sense! Where are the examples?

We aim at being able to express statements from systems specifications, e.g.,

“The item is not handed to the customer unless a payment has been received.”

Propositional logic is rather weak, we will have to enrich it for this purpose and 
look at stronger logics. This gives us only the very form of such statements.

But we might begin with:
– p defined by “the item is handed to the customer.”
– q defined by “the payment has been received.”

Then our statement might be expressed in propositional logic by p  → q.

Using predicates, which we will look into later, this might become
HandoverItem(self, customer)  PaymentDone(customer, self).→

in this form, the 
actual content has 
disappeared … :(
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Semantics of propositional logic

Three branches of the theory of formal languages:

– Syntax (theory of the structure of language)
– Semantics (theory of the meaning of language)
– Pragmatics (theory of the use of language)

Generally speaking, semantics refers to “meaning,” as opposed to syntax, 
which refers to “proper grammar and notation.”

Under many typical circumstances (particularly in computing), a code, formula, 
statement, etc., can only have a semantic content if it has correct syntax. 
However, human language pragmatics permits people to also make sense of 
utterances that are not grammatically correct.

Just like statements in human language, logical statements use language(s).
They can be analysed in the same way, and so can programming languages.
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Semantics of propositional logic

The semantics (meaning) of a propositional logic statement is given by the 
valuations, truth value assignments for atomic statements, that make it true.

The straightforward way of expressing that is through a truth table:

p q p  → q

False False True

False True True

True False False

True True True

“p implies q”

recall that p  → q 
can be rewritten as

¬p  ∨ q

or also as

¬(p  ¬∧ q)

Task: Determine 
truth table for

(p  → q)  (∧ q ∨ r)

“p implies q”

“not-p or q”

“not (p and not-q)”
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Semantics of propositional logic

The semantics (meaning) of a propositional logic statement is given by the 
valuations, truth value assignments for atomic statements, that make it true.

The straightforward way of expressing that is through a truth table:

p q r p  → q q ∨ r (p  → q)  (∧ q ∨ r)

False False False True False False
False False True True True True
False True False True True True
False True True True True True
True False False False False False
True False True False True False
True True False True True True
True True True True True True

“p implies q” “q or r” “(p implies q) and (q or r)”
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Satisfiability

Typically, we would expect the truth value of a propositional logic statement to 
depend on the valuation, i.e., on the truth values of its atomic statements.

But there are statements that can never become true. They are unsatisfiable.

p q r ¬(p  → q) ¬(q  → r) ¬(p  → q)  ¬(∧ q  → r)

False False False False False False
False False True False False False
False True False False True False
False True True False False False
True False False True False False
True False True True False False
True True False False True False
True True True False False False

“not (p implies q)”

“not (q implies r)”

“not (p implies q)
and not (q implies r)”
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Satisfiability

A statement is satisfiable if it has a model, that is, a valuation that makes it true.

Statements that never become true are called unsatisfiable or contradictions. 
Statements that are always true and never become false are called tautologies.

p q r p  → q q  → r (p  → q) ∨ (q  → r)

False False False True True True
False False True True True True
False True False True False True
False True True True True True
True False False False True True
True False True False True True
True True False True False True
True True True True True True

“p implies q” “q implies r” “(p implies q) or (q implies r)”
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Satisfiability and the square of opposition

A statement is satisfiable if it has a model, that is, a valuation that makes it true.

Statements that never become true are called unsatisfiable or contradictions. 
Statements that are always true and never become false are called tautologies.

A statement is falsifiable if it there is a valuation that makes it false.
Statements that are both satisfiable and falsifiable are called contingent.

tautological
(unfalsifiable)

contradictory
(unsatisfiable)

satisfiable falsifiable
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Satisfiability and the square of opposition

If a statement S is tautological, then its negation ¬S is contradictory.
– (p  → q)  (∨ q  → r) is a tautology; so ¬((p  → q)  (∨ q  → r)) is a contradiction.

The negation of “statement S is satisfiable” is “statement S is a contradiction.”
– (p  ∨ q)  (¬∧ p  ¬∨ q) is satisfiable; therefore it is not a contradiction.

tautological
(unfalsifiable)

contradictory
(unsatisfiable)

satisfiable falsifiable

is not
(“complement”, 

“outer negation”)
is also

(“subsumption”)
is also

(“subsumption”)

is opposite of
(“inner negation”)

is opposite of
(“inner negation”)
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Satisfiability and the square of opposition

tautological
(unfalsifiable)

contradictory
(unsatisfiable)

satisfiable falsifiable

is not
is also

is opposite of

is opposite of

is not
is also

Where do the following propositional logic statements belong?

1.  (p  ∧ q)  → p 2.  p  ↔ q 3.  ¬(p  ∨ ¬p)

– Are they contradictions (always false) or satisfiable (not always false)?
– Are they tautologies (always true) or falsifiable (not always true)?

“not (p or not-p)”“p equivalent q”“(p and q) implies p”
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Help! Why logic? … will I ever need this?

You might, if …

– … you will need to formally verify programs or other systems not 
manually, but by automated verification based on model checking;
• the conditions that are to be verified are usually statements 

expressed in dedicated kinds of logics (such as temporal logic).

– … you would like to understand all the programming paradigms, not 
only procedural and object-oriented programming;
• logic programming, for example in PROLOG, is its own paradigm.

– … you plan to develop semantic web applications, or if you would like 
to use non-relational databases;
• the content of typical non-relational databases is given by 

statements expressed in a special kind of logic – description logic.
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Help! Why logic? … will I ever need this?

… or you might just as well never need it! (Except for the exam.)
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