CO2412
 Computational Thinking

Normal forms
Entailment and inference Tutorial 3.3 problem

Where opportunity creates success

Intro to logic: Propositional logic

Negation (\neg)

Conjunction (\wedge) "and"
Disjunction (V) "or"

Implication (\rightarrow)
Equivalence (\leftrightarrow)

p	9	V \neg	$\bigcirc \wedge$	$(p \vee \neg q) \leftrightarrow(\neg p \wedge$
alse	False	True	False	False
False	True	False	True	False
True	False	True	False	False
True	True	True	False	False

Intro to logic: Propositional logic

Negation (\neg)
Conjunction (\wedge) "and"
Disjunction (V) "or"

p	q	$p \vee \neg q$	$\neg p \wedge q$
False	False	True	False
False	True	False	True
True	False	True	False
True	True	True	False

$$
\begin{aligned}
& \text { Implication }(\rightarrow) \\
& \text { Equivalence }(\leftrightarrow)
\end{aligned}
$$

Intro to logic: Propositional logic

Negation (\neg)

Conjunction (\wedge) "and"
Disjunction (V) "or"

Implication (\rightarrow)
Equivalence (\leftrightarrow)

Normal forms in propositional logic

Syntactic equivalence rules

Every statement has its unique, well-defined semantics: Its truth table.
But the obverse is not true. There are many formulas for the same truth table. Statements with the same truth table are called semantically equivalent.

Examples:

$$
\begin{aligned}
& -\neg(p \vee(\neg p \wedge \neg q)) \equiv \neg p \wedge \neg(\neg p \wedge \neg q) \equiv \neg p \wedge(\neg \neg p \vee \neg \neg q) \equiv \neg p \wedge(p \vee q) \\
& -\neg p \wedge(p \vee q) \equiv(\neg p \wedge p) \vee(\neg p \wedge q) \equiv \text { False } \vee(\neg p \wedge q) \equiv \neg p \wedge q
\end{aligned}
$$

Associative laws	Distributive laws	De Morgan's laws
$R \vee(S \vee T) \equiv(R \vee S) \vee T$,	$R \wedge(S \vee T) \equiv(R \wedge S) \vee(R \wedge T)$,	$\neg(R \vee S) \equiv \neg R \wedge \neg S$
$R \wedge(S \wedge T) \equiv(R \wedge S) \wedge T$,	$R \vee(S \wedge T) \equiv(R \vee S) \wedge(R \vee T)$,	$\neg(R \wedge S) \equiv \neg R \vee \neg S$

Syntactic equivalence rules

Every statement has its unique, well-defined semantics: Its truth table.
But the obverse is not true. There are many formulas for the same truth table. Statements with the same truth table are called semantically equivalent.

Notation: $R \equiv S$ (" R and S are semantically equivalent")
Syntactic equivalence rules (i.e., rules based on the statement structure) include:
Obvious equivalences
$\neg \neg S \equiv S \vee S \equiv S \wedge S \equiv S, R \wedge S \equiv S \wedge R$, $S \vee \neg S \equiv S \vee$ True \equiv True, $S \wedge \neg S \equiv S \wedge$ False \equiv False, \neg True \equiv False

Associative laws
$R \vee(S \vee T) \equiv(R \vee S) \vee T, \quad R \wedge(S \vee T) \equiv(R \wedge S) \vee(R \wedge T)$,
$R \wedge(S \wedge T) \equiv(R \wedge S) \wedge T, \quad R \vee(S \wedge T) \equiv(R \vee S) \wedge(R \vee T)$,

De Morgan's laws
$\neg(R \vee S) \equiv \neg R \wedge \neg S$
$\neg(R \wedge S) \equiv \neg R \vee \neg S$

Definition of implication and equivalence $R \rightarrow S \equiv \neg R \vee S, \quad R \leftrightarrow S \equiv(R \rightarrow S) \wedge(S \rightarrow R)$

Syntactic equivalence rules: Example

"(p or q) and (not-p or q)"
Attempt to simplify the statement $(p \vee q) \wedge(\neg p \vee q)$:
$(p \vee q) \wedge(\neg p \vee q) \equiv((p \vee q) \wedge \neg p) \vee((p \vee q) \wedge q)$

$$
\begin{aligned}
& \equiv(p \wedge \neg p) \vee(q \wedge \neg p) \vee(p \wedge q) \vee(q \wedge q) \\
& \equiv \quad \text { False } \vee(q \wedge(\neg p \vee p)) \quad \vee \vee q
\end{aligned}
$$

Obvious equivalences

$$
\neg \neg S \equiv S \vee S \equiv S \wedge S \equiv S, R \wedge S \equiv S \wedge R
$$

$S \vee \neg S \equiv S \vee$ True \equiv True, $S \wedge \neg S \equiv S \wedge$ False \equiv False, \neg True \equiv False

Associative laws
$R \vee(S \vee T) \equiv(R \vee S) \vee T, \quad R \wedge(S \vee T) \equiv(R \wedge S) \vee(R \wedge T)$,
$R \wedge(S \wedge T) \equiv(R \wedge S) \wedge T, \quad R \vee(S \wedge T) \equiv(R \vee S) \wedge(R \vee T)$,

De Morgan's laws
$\neg(R \vee S) \equiv \neg R \wedge \neg S$
$\neg(R \wedge S) \equiv \neg R \vee \neg S$

Definition of implication and equivalence $R \rightarrow S \equiv \neg R \vee S, \quad R \leftrightarrow S \equiv(R \rightarrow S) \wedge(S \rightarrow R)$

Syntactic equivalence rules: Example

"(p or q) and (not-p or q)"

Attempt to simplify the statement $(p \vee q) \wedge(\neg p \vee q)$:
$(p \vee q) \wedge(\neg p \vee q) \equiv((p \vee q) \wedge \neg p) \vee((p \vee q) \wedge q)$

$$
\begin{aligned}
& \equiv(p \wedge \neg p) \vee(q \wedge \neg p) \vee(p \wedge q) \vee(q \wedge q) \\
& \equiv \quad \text { False } \vee(q \wedge(\neg p \vee p)) \quad \vee \vee q
\end{aligned}
$$

$$
\equiv(q \wedge \text { True }) \vee q
$$

$$
\equiv q \vee q \equiv q \quad \text { simpler to evaluate the truth table. }
$$

p	q	$p \vee q$	$\neg p \vee q$	$(p \vee q) \wedge(\neg p \vee q)$
False	False	False	True	False
False	True	True	True	True
True	False	True	False	False
True	True	True	True	True

Semantic equivalence

Every statement has its unique, well-defined semantics: Its truth table.
But the obverse is not true. There are many formulas for the same truth table. Statements with the same truth table are called semantically equivalent.

p	9	shared semantics (meaning) of these statements:	
False	False	True	"not-p or (not-q implies q)"
			$\neg p \vee(\neg q \rightarrow q)$
False	True	True	"not (not-q and not-not-p)"
True	False	False	$\neg(\neg q \wedge \neg \neg p)$
		"(p implies q) and (q or not-q)"	
True	True	True	$(p \rightarrow q) \wedge(q \vee \neg q)$

Semantic equivalence

Attention to pitfall: "Semantic equivalence" (of statements R and S) is not the same as the "logical equivalence" operator (as part of a statement).

Connection between the two: $R \equiv S$ if and only if statement $R \leftrightarrow S$ is a tautology.

\boldsymbol{p}	\mathbf{q}	\boldsymbol{r}
False	False	False
False	False	True
False	True	False
False	True	True
True	False	False
True	False	True
True	True	False
True	True	True

Normal forms: From truth tables to statements

Assume that a truth table is given.
How can we easily construct a logical statement with the given semantics?

Normal forms: From truth tables to statements

$$
(\neg p \wedge \neg q \wedge \neg r) \vee(\neg p \wedge q \wedge r) \vee(p \wedge \neg q \wedge \neg r) \vee(p \wedge q \wedge \neg r)
$$

The statement above is in full disjunctive normal form (full DNF).
Every truth table has exactly one unique representation in full DNF.

p	9	r	specified semantics
False	False	False	True « made true by $\neg p \wedge \neg q \wedge \neg r$
False	False	True	False
False	True	False	False
False	True	True	True \downarrow made true by $\neg p \wedge q \wedge r$
True	False	False	True ∇
True	False	True	False made true by p $\wedge \neg r$
True	True	False	True 4
True	True	True	False $\begin{gathered}\text { shorter version, in DNF, but not full DNF: } \\ (\neg p \wedge \neg q \wedge \neg r) \vee(\neg p \wedge q \wedge r) \vee(p \wedge \neg r)\end{gathered}$

Disjunctive normal form (DNF)

```
conjunctive clause conjunctive clause conjunctive clause conjunctive clause
```

$$
(\neg p \wedge \neg q \wedge \neg r) \vee(\neg p \wedge q \wedge r) \vee(p \wedge \neg q \wedge \neg r) \vee(p \wedge q \wedge \neg r)
$$

The statement above is in full disjunctive normal form (full DNF).
Each "True" entry in a truth table produces a conjunctive clause in full DNF.

\boldsymbol{p}	\mathbf{q}	\boldsymbol{r}	
False	False	False	True
False	False	True	False
False	True	False	False
False	True	True	True
True	False	False	True
True	False	True	False
True	True	False	True
True	True	True	False

Atomic statements and their negations, such as $p, \neg p, q, \neg q, r, \neg r$, are called literals. A conjunction of literals is called a conjunctive clause.

A statement is in DNF if it is a disjunction of conjunctive clauses. It is in full DNF if all conjunctive clauses contain all atomic statements.

Disjunctive normal form (DNF)

The example below has six True entries in the truth table. It corresponds to a full DNF form with six clauses:
$(\neg p \wedge \neg q \wedge \neg r) \vee(\neg p \wedge \neg q \wedge r) \vee(\neg p \wedge q \wedge r) \vee(p \wedge \neg q \wedge \neg r) \vee(p \wedge q \wedge \neg r) \vee(p \wedge q \wedge r)$
$p \quad q \quad r \quad$ specified semantics

False	False	False	True	Observation:
False	False	True	True	
False	True	False	False	With n atomic statements, the truth
False	True	True	True	table has 2^{n} entries.
True	False	False	True	If almost all entries are "True," it
True	False	True	False	would be far more efficient to
True	True	False	True	construct a standard formula based
True	True	True	True	on the few entries that are "False."

Conjunctive normal form (CNF)

Observation:

- The statement $p \vee \neg q \vee r$ makes the third row False, as desired;
- The statement $\neg p \vee q \vee \neg r$ makes the sixth row False, as desired;
- These are both disjunctions of literals, that is, disjunctive clauses.

\mathbf{p}	\mathbf{q}	\mathbf{r}	specification	"por not-q or r " $p \vee \neg q \vee r$	"not-p or q or not- r " $\neg p \vee q \vee \neg r$
False	False	False	True	True	True
False	False	True	True	True	True
False	True	False	False	False	True
False	True	True	True	True	True
True	False	False	True	True	True
True	False	True	False	True	False
True	True	False	True	True	True
True	True	True	True	True	True

Conjunctive normal form (CNF)

$$
(p \vee \neg q \vee r) \wedge(\neg p \vee q \vee \neg r)
$$

The statement above is in full conjunctive normal form (full CNF).
Each "False" entry in a truth table produces one disjunctive clause in full CNF.

\mathbf{p}	\mathbf{q}	\boldsymbol{r}	specification	$(p \vee \neg q \vee r) \wedge(\neg p \vee q \vee \neg r)$ "(por not-q or r) and (not-p or q or not-r)"
False	False	False	True	True
False	False	True	True	True
False	True	False	False	False
False	True	True	True	True
True	False	False	True	True
True	False	True	False	False
True	True	False	True	True
True	True	True	True	True

Example: Transformation into normal forms

original formula
$\neg p \vee(\neg q \rightarrow q)$
"not-p or (not-q implies q)"
$p \quad q \quad \neg q \rightarrow q \quad \neg p \vee(\neg q \rightarrow q)$
False False False
False True True

True False False

True True True
full disjunctive normal form

$$
(\neg p \wedge \neg q) \vee(\neg p \wedge q) \vee(p \wedge q)
$$

"(not-p and not-q) or (not-p and q) or (p and q)"

$$
\neg p \vee(\neg q \rightarrow q)
$$

True \longleftarrow is True for conjunctive clause $\neg p \wedge \neg q$
True \longleftarrow is True for conjunctive clause $\neg p \wedge q$ is False for disjunctive clause $\neg p \vee q$
is True for conjunctive clause p ^ q

Normal forms: Summary

Valuation: Assignment of truth values to all the atomic statements. For n atomic statements, there are 2^{n} possible valuations. Each row of a truth table corresponds to one valuation.

Literals: Atomic statements p, q, \ldots, and their negations $\neg p, \neg q, \ldots$
Clauses: A conjunction ("and") of literals, such as $p \wedge \neg q \wedge \neg r$, is a conjunctive clause. A disjunction ("or") of literals, such as $\neg p \vee q \vee r$, is a disjunctive clause.

DNF:

- A statement is in DNF if it is a disjunction of conjunctive clauses.
- It is in full DNF if all atomic statements appear in all conjunctive clauses.
- The full DNF version of a truth table has one clause per True valuation.

CNF:

- A statement is in CNF if it is a conjunction of disjunctive clauses.
- It is in full CNF if all atomic statements appear in all disjunctive clauses.

Normal forms: Tautologies and contradictions

CNF:

- A statement is in CNF if it is a conjunction of disjunctive clauses.
- It is in full CNF if all atomic statements appear in all disjunctive clauses.
- The full CNF version of a truth table has one clause per False valuation.
- For a tautology, no False valuations exist; the full CNF is just "True."
- Tautology in full CNF:
- Contradiction in full CNF:

```
True
(\negp \vee \negq) ^(\negp\veeq)^(p\vee\negq)^(p\veeq)
```


DNF:

- A statement is in DNF if it is a disjunction of conjunctive clauses.
- It is in full DNF if all atomic statements appear in all conjunctive clauses.
- The full DNF version of a truth table has one clause per True valuation.
- For a contradiction, no True valuations exist; the full DNF is just "False."
- Tautology in full DNF:
- Contradiction in full DNF:
$(\neg p \wedge \neg q) \vee(\neg p \wedge q) \vee(p \wedge \neg q) \vee(p \wedge q)$
False

Entailment and inference

Entailment

The statement R entails the statement S if all valuations that fulfill R also fulfill S. In other words: If R is True, we know that S is True as well.

A valuation for which a statement S becomes True is also called a model of S.

Semantic equivalence

$$
R \equiv S
$$

("The statements R and S are semantically equivalent")

All models of R are also models of S.
R and S have the same models: $\quad S$ may still be True where R is False, i.e.,
Their truth tables are the same.

The statement $R \leftrightarrow S$ is a tautology. The statement $R \rightarrow S$ is a tautology.

Entailment

It is also possible for multiple statements (premises) to entail another statement (conclusion). That occurs if all valuations that fulfill all the premises also fulfill the conclusion. If the premises are all True, the conclusion is True as well.
Remark
If S is a tautology, it must
always be True; for this, no
premises are needed.
We can then use the same
notation, but without
premises:
$\models S$

$$
\begin{gathered}
\text { Entailment } \\
R_{0}, R_{1}, \ldots \models S
\end{gathered}
$$

("The premises R_{0}, R_{1}, \ldots entail the conclusion $S^{\prime \prime}$)
All models of all premises are also models of S. Where R_{0}, R_{1} etc. are all True, S must also be True.

But S can have more True entries than $R_{0} \wedge R_{1} \wedge \ldots$
The statement $\left(R_{0} \wedge R_{1} \wedge \ldots\right) \rightarrow S$ is a tautology.

Entailment: Example

The premises " p implies q" and "not-q" together entail the consequence "not-p".

1) Show that $p \rightarrow q, \neg q \vDash \neg p$.

p	q	$(p \rightarrow q)$	$\neg q$	$\neg p$
False	False	True	True	True
False	True	True	False	True
True	False	False	True	False
True	True	True	False	False

The premise "(p implies q) and not-q" entails the consequence "not-p".
2) Show that $((p \rightarrow q) \wedge \neg q) \vDash \neg p$.

p	q	$(p \rightarrow q)$	$\neg q$	$(p \rightarrow q) \wedge \neg q$	$\neg p$
False	False	True	True	True	True
False	True	True	False	False	True
True	False	False	True	False	False
True	True	True	False	False	False

Entailment: Example

The statement "((p implies q) and not-q) implies not-p" is a tautology.
3) Show that $\vDash((p \rightarrow q) \wedge \neg q) \rightarrow \neg p$.

p	q	$(p \rightarrow q) \wedge \neg q$	$\neg p$	$((p \rightarrow q) \wedge \neg q) \rightarrow \neg p$
False	False	True	True	True
False	True	False	True	True
True	False	False	False	True
True	True	False	False	True

The premise "(p implies q) and not-q" entails the consequence "not-p".
2) Show that $((p \rightarrow q) \wedge \neg q) \vDash \neg p$.

p	q	$(p \rightarrow q)$	$\neg q$	$(p \rightarrow q) \wedge \neg q$	$\neg p$
False	False	True	True	True	True
False	True	True	False	False	True
True	False	False	True	False	False
True	True	True	False	False	False

Inference rules for propositional logic

The pattern that we have found for semantic equivalence repeats itself for entailment: We can determine entailment semantically, from the truth tables.

We can also determine it syntactically, using inference rules such as:

$R \vDash$ True
False $\vDash S$

$R \rightarrow S, R$	$\vDash S$
$S \rightarrow R, \neg R$	$\vDash \neg S$

$R, S \vDash R \wedge S$

$$
R \vee S, \neg R \vee T \vDash S \vee T
$$

$R \wedge S \vDash S$
$R \vDash R \vee S$
$R \vDash \neg R \rightarrow S$
All the rules for semantic equivalence can be listed here again, in both ways, such as:

$$
S \vDash \neg \neg S \quad \neg \neg S \vDash S
$$

The process of finding statements that are entailed by a given set of premises (also called axioms in some contexts) is called inference.

BFS implementation (tutorial 3.3 problem)

See "breadth-first-search" Jupyter Notebook

CO2412
 Computational Thinking

Normal forms
Entailment and inference Tutorial 3.3 problem

Where opportunity creates success

