CO2412
 Computational Thinking

Resolution (tutorial 4.5)
Knowledge graph (tutorial 4.6)
Predicate logic
Quantifiers and first-order logic
Where opportunity creates success

Resolution:
 Tutorial 4.5 problem

4.5.1 Concepts

Literals: Atomic statements p, q, \ldots, and their negations $\neg p, \neg q, \ldots$
Clauses: A conjunction ("and") of literals, such as $p \wedge \neg q \wedge \neg r$, is a conjunctive clause. A disjunction ("or") of literals, such as $\neg p \vee q \vee r$, is a disjunctive clause.

Conjunctive normal form (CNF):

- A statement is in CNF if it is a conjunction of disjunctive clauses.
- It is in full CNF if all atomic statements appear in all disjunctive clauses.
- The full CNF version of a truth table has one clause per False valuation.

Entailment: R entails S if and only if every model of R is a model of S. $(R \models S$.)
Inference: Deduction of an entailment following a rule or a system of rules.
Resolution: Inference technique applied to CNF statements based on the rule $\left(p \vee L_{0} \vee L_{1} \vee \ldots\right) \wedge\left(\neg p \vee M_{0} \vee M_{1} \vee \ldots\right) \vDash\left(L_{0} \vee L_{1} \vee \ldots \vee M_{0} \vee M_{1} \vee \ldots\right)$.

4.5.1 Resolution (completeness for satisfiability)

Completeness of resolution:

- If a statement in CNF is a contradiction, an algorithm implementing resolution as an inference method succeeds at proving this in all cases; i.e., two clauses p_{i} and $\neg p_{i}$ for the same atomic statement are deduced.
- The same applies to proving that multiple statements are inconsistent.
- If resolution does not detect a contradiction, the statement is satisfiable.
- To check whether R is a tautology, resolution can be applied to $\neg R$.

Entailment: R entails S if and only if every model of R is a model of S. $(R \vDash S$.)
Inference: Deduction of an entailment following a rule or a system of rules.
Resolution: Inference technique applied to CNF statements based on the rule
$\left(p \vee L_{0} \vee L_{1} \vee \ldots\right) \wedge\left(\neg p \vee M_{0} \vee M_{1} \vee \ldots\right) \vDash\left(L_{0} \vee L_{1} \vee \ldots \vee M_{0} \vee M_{1} \vee \ldots\right)$.

4.5.2 From logic to graphs

Undirected graph; $p_{A B}$ representing "there is an edge between A and $B, "$ etc. How would we paraphrase the meaning of the propositional logic statements:

How many literals are there? Six: $p_{\mathrm{AB}}, \neg p_{\mathrm{AB}}, p_{\mathrm{AC}}, \neg p_{\mathrm{AC}}, p_{\mathrm{BC}}$, and $\neg p_{\mathrm{BC}}$.

4.5.3 Conjunctive normal form

Transformation to CNF. Rule: $(R \leftrightarrow S) \equiv(R \vee \neg S) \wedge(\neg R \vee S)$.
$S_{A}=\neg p_{A B} \vee \neg p_{A C}$

$S_{B}=p_{A B} \leftrightarrow \neg p_{B C}$

$$
p_{\mathrm{AB}} \leftrightarrow \neg p_{\mathrm{BC}}
$$

$$
\equiv\left(p_{\mathrm{AB}} \vee \neg \neg p_{\mathrm{BC}}\right) \wedge\left(\neg p_{\mathrm{AB}} \vee \neg p_{\mathrm{BC}}\right)
$$

$$
\equiv\left(p_{\mathrm{AB}} \vee p_{\mathrm{BC}}\right) \wedge\left(\neg p_{\mathrm{AB}} \vee \neg p_{\mathrm{BC}}\right)
$$

$S_{C}=p_{A C} \leftrightarrow p_{B C}$

$$
\begin{aligned}
p_{\mathrm{AC}} & \leftrightarrow \neg p_{\mathrm{BC}} \\
& \equiv\left(p_{\mathrm{AC}} \vee \neg p_{\mathrm{BC}}\right) \wedge\left(\neg p_{\mathrm{AC}} \vee p_{\mathrm{BC}}\right)
\end{aligned}
$$

Clauses: 0) $\neg p_{A B} \vee \neg p_{A C}$ 1) $p_{A B} \vee p_{B C}$ 2) $\neg p_{A B} \vee \neg p_{B C}$ 3) $p_{A C} \vee \neg p_{B C}$ 4) $\neg p_{A C} \vee p_{B C}$

4.5.4 Consistency: Common model

If multiple statements are consistent, they have a common model.
$S_{A}=\neg p_{A B} \vee \neg p_{A C}$
$\left(\neg p_{A B} \vee \neg p_{A C}\right)$
$S_{B}=p_{A B} \leftrightarrow \neg p_{B C}$
$\left(p_{A B} \vee p_{B C}\right) \wedge\left(\neg p_{A B} \vee \neg p_{B C}\right)$
$S_{C}=p_{A C} \leftrightarrow p_{B C}$
$\left(p_{\mathrm{AC}} \vee \neg p_{\mathrm{BC}}\right) \wedge\left(\neg p_{\mathrm{AC}} \vee p_{\mathrm{BC}}\right)$

"Vertex A has degree 0 or 1."
"Vertex B has degree 1."
"Vertex C has degree 0 or 2."

Clauses: 0) $\neg p_{A B} v \neg p_{A C}$ 1) $p_{A B} \vee p_{B C}$ 2) $\neg p_{A B} v \neg p_{B C}$ 3) $p_{A C} v \neg p_{B C}$ 4) $\neg p_{A C} \vee p_{B C}$

4.5.4 Consistency: Resolution

$$
\left(p \vee L_{0} \vee L_{1} \vee \ldots\right) \wedge\left(\neg p \vee M_{0} \vee M_{1} \vee \ldots\right) \vDash\left(L_{0} \vee L_{1} \vee \ldots \vee M_{0} \vee M_{1} \vee \ldots\right) .
$$

0) $\neg p_{A B} \vee \neg p_{A C}$ with 1) $p_{A B} \vee p_{B C}$
1) $p_{A B} \vee p_{B C} \quad$ with 2) $\neg p_{A B} \vee \neg p_{B C}$
resolves to 4) $\neg p_{A C} \vee p_{B C}$
resolves to $p_{A B} \vee \neg p_{A B}$ and $p_{B C} \vee \neg p_{B C}$
```
\(i=1\)
while i < len(clauses):
```

 for j in range(i):
 if direct_contradiction(clauses[i], clauses[j]):
 return False
 resolved_clauses = resolve(clauses[i], clauses[j])
 for c in resolved_clauses:
 if should_be_appended(c, clauses):
 clauses.append(c)
 \(i+=1\)
 return True
 Clauses: 0) $\neg p_{A B} \vee \neg p_{A C}$ 1) $p_{A B} \vee p_{B C}$ 2) $\neg p_{A B} \vee \neg p_{B C}$ 3) $p_{A C} \vee \neg p_{B C}$ 4) $\neg p_{A C} \vee p_{B C}$

4.5.4 Consistency: Resolution

$$
\left(p \vee L_{0} \vee L_{1} \vee \ldots\right) \wedge\left(\neg p \vee M_{0} \vee M_{1} \vee \ldots\right) \vDash\left(L_{0} \vee L_{1} \vee \ldots \vee M_{0} \vee M_{1} \vee \ldots\right)
$$

0) $\neg p_{A B} \vee \neg p_{A C}$ with 1) $p_{A B} \vee p_{B C}$
1) $p_{A B} \vee p_{B C} \quad$ with 2) $\neg p_{A B} \vee \neg p_{B C}$
2) $\neg p_{A B} v \neg p_{A C}$ with 3) $p_{A C} \vee \neg p_{B C}$
3) $p_{A B} \vee p_{B C} \quad$ with 3) $p_{A C} \vee \neg p_{B C}$
4) $\neg p_{A B} \vee \neg p_{B C}$ with 4) $\neg p_{A C} \vee p_{B C}$
5) $p_{A C} \vee \neg p_{B C} \quad$ with 4) $\neg p_{A C} \vee p_{B C}$ 0) $\neg p_{A B} \vee \neg p_{A C}$ with 5) $p_{A B} \vee p_{A C}$ 2) $\neg p_{A B} \vee \neg p_{B C}$ with 5) $p_{A B} \vee p_{A C}$
6) $\neg p_{A C} \vee p_{B C}$ with 5) $p_{A B} \vee p_{A C}$
resolves to 4) $\neg p_{A C} \vee p_{B C}$ resolves to $p_{A B} v \neg p_{A B}$ and $p_{B C} v \neg p_{B C}$ resolves to 2) $\neg p_{A B} V \neg p_{B C}$ resolves to 5) $p_{A B} \vee p_{A C}$ resolves to 0) $\neg p_{A B} \vee \neg p_{A C}$ resolves to $p_{A C} v \neg p_{A C}$ and $p_{B C} v \neg p_{B C}$ resolves to $p_{A B} v \neg p_{A B}$ and $p_{A C} v \neg p_{A C}$ resolves to 3) $p_{A C} v \neg p_{B C}$ resolves to 1) $p_{A B} \vee p_{B C}$

Clauses: 0) $\neg p_{A B} \vee \neg p_{A C}$ 1) $p_{A B} \vee p_{B C}$ 2) $\neg p_{A B} \vee \neg p_{B C}$ 3) $p_{A C} \vee \neg p_{B C}$ 4) $\neg p_{A C} \vee p_{B C}$

Knowledge graph: Tutorial 4.6 problem

4.6.1 Paths and cycles in graphs

- A tree is hierarchical. Every link goes from one node to a subordinate node. There is only one path from the root to any of the nodes in the tree. No link goes back up again. In particular, there are no cycles.
- There is exactly one node, the root node, from which all nodes can be reached. Each node is either a leaf, or it is a root for its own subtree.

4.6.1 Paths and cycles in graphs

Example knowledge graph (see Jupyter notebook knowledge-graph).

How many cycles are there?
There are no cycles.

Why is the example knowledge graph not a tree?

There are multiple diamondlike structures (multiple paths from one node to another).

4.6.1 Paths and cycles in graphs

What are the indegrees and outdegrees of the nodes? (See below.)

4.6.1 Paths and cycles in graphs

What are the indegrees and outdegrees of the nodes? (See below.)

4.6.1 Paths and cycles in graphs

Algorithm for computing the no. of paths with length m (consisting of m edges):

4.6.2 Spanning trees

breadth-first tree (one out of three)

4.6.3 Knowledge graphs and predicates

Introduction of quantifiers ("exists", "for all"):

Are there any nodes x, y for which the logical expression edge(x, y) ^ label(y, "Larnaca") becomes True?
Yes!

A node \mathbf{x} exists, and a node y exists, such that this is True:

$$
x=\text { vertex } 2 ; y=\text { vertex } 1
$$

Are there any nodes x, y for which the logical expression has_campus_in(x, y) \rightarrow label(x, "UCLan") becomes False?
No!

The expression is True for all x and y .

Predicate logic

Predicate logic

Statements in propositional logic are constructed from a finite number of atomic statements in combination with the five logical operators for conjunction, disjunction, negation, implication, and equivalence.

To extend this to predicate logic, we replace atomic statements by predicates in combination with variables (x, y, \ldots) and values that can be used as arguments of the predicates. Predicates are functions with boolean return values.

Example (Erciyes): Define $P(x, y, z)$ by the truth criterion $x+y=z^{2}$.

$$
\begin{array}{llr}
P(2,7,3) & \text { evaluates to True; } & P(5,11,4) \rightarrow P(3,2,4) \\
P(5,11,4) & \text { evaluates to True; } & \text { evalutes to False. } \\
P(3,2,4) & \text { evaluates to False. } &
\end{array}
$$

There, P is a ternary predicate (three arguments).

Unary and binary predicates

"Model" or knowledge graph K

Knowledge graphs are best suitable to visualize unary predicates (one argument) and binary predicates (two arguments).

Binary predicates, visualized as edges, represent relations between two objects.
teaches_at $\left(v_{3}, v_{2}\right) \wedge \neg$ teaches_at $\left(v_{2}, v_{3}\right)$
Unary predicates can represent properties, types, or similar features of single objects.
Module $\left(v_{4}\right)$) label $\left(v_{4},{ }^{\prime \prime} \mathrm{CO} 2412^{\prime \prime}\right)$

Models of predicate logic statements

"Model" or knowledge graph K
K satisfies the predicate logic statements:
$S_{0}=$ teaches_at $\left(v_{3^{\prime}}, v_{2}\right) \wedge \neg$ teaches_at $\left(v_{2}, v_{3}\right)$
$S_{1}=\operatorname{Module}\left(v_{4}\right) \wedge$ label $\left(v_{4}{ }^{\prime \prime}\right.$ CO2412")

We say, " K models S_{0} " or " K is a model of S_{1} ". Notation: $K \vDash S_{0}$ and $K \models S_{1}$.

The expression has_campus_in (x, y) contains free variables: Variables with an unspecified value. Its truth value, even for a given K, depends on the values assigned to x and y.
K is a model for (i.e., includes) all the predicates and values on the left, but not a model of all that can be said about them, e.g., $K \not \vDash$ teaches_at $\left(v_{2}, v_{3}\right)$.

Binary predicates, visualized as edges, represent relations between two objects. teaches_at $\left(v_{3}, v_{2}\right) \wedge \neg$ teaches_at $\left(v_{2}, v_{3}\right)$

Unary predicates can represent properties, types, or similar features of single objects.
Module $\left(v_{4}\right) \wedge$ label $\left(v_{4}{ }^{\prime \prime}\right.$ CO2412")

What predicate logic retains from propositional logic

All observations on propositional logic continue to apply if we replace all the predicate-argument combinations by atomic statements.

Tautologies, contradictions, satisfiability, and falsifiability
$\vDash p \vee(p \rightarrow q)$

$$
\begin{aligned}
& \vDash \text { (is_greater_than }(v, w) \vee \\
& \quad \text { (is_greater_than }(v, w) \rightarrow \text { is_even }(w))
\end{aligned}
$$

What predicate logic retains from propositional logic

All observations on propositional logic continue to apply if we replace all the predicate-argument combinations by atomic statements.

Semantic equivalence and entailment
literals in predicate logic:
predicates and their negations
$p \leftrightarrow \neg q \equiv(p \vee q) \wedge(\neg p \vee \neg q) \quad$ identical $(x, y) \leftrightarrow \neg \operatorname{different}(x, y)$
literals in propositional logic: atomic statements and their negations
$(\neg p \vee q),(\neg q \vee \neg r) \models \neg p \vee \neg r$
a disjunctive
clause
\equiv (identical $(x, y) \vee \operatorname{different}(x, y))$
$\wedge \quad(\neg$ identical $(x, y) \vee \neg \operatorname{different}(x, y))$
ᄀis_father_of (v, w) v Human (v),
$\neg H u m a n(v) v \neg R o b o t(v)$
$\vDash \quad \neg i s _f a t h e r _o f(v, w) v \neg \operatorname{Robot}(v)$

Tautologies, contradictions, satisfiability, and falsifiability
$\vDash p \vee(p \rightarrow q)$
\vDash (is_greater_than $(v, w) v$

$$
\text { (is_greater_than }(v, w) \rightarrow \text { is_even }(w) \text {) }
$$

Quantifiers and first-order logic

Universal quantifier

The universal quantifier, denoted \forall and read as "for all," is applied to a variable that occurs as a free variable in a predicate logic expression.

expression with free variables

has_campus_in $(x, y) \rightarrow$ label $(x$, "UCLan")
"If x has a campus in y, the label of x is «UCLan»."

The expression cannot be assigned a truth value based on
a model; values for the variables would be required.

statement with bound variables

$\forall x \forall y$ (has_campus_in $(x, y) \rightarrow$ label $(x$, "UCLan"))
"For all possible values of x and y, if x has a campus in y, the label of x is "UCLan»."
K models the statement if the expression is True for all potential values in K of the bound variables (all values from the domain, e.g., all nodes in the knowledge graph).

In first-order predicate logic (usually just called first-order logic), the quantifiers "for all" (\forall, universal quantifier) and "there is" (\exists, existential quantifier) can be applied to variables that occur as arguments of predicates.

Existential quantifier

The existential quantifier, denoted \exists and read "there is" or "there exists," is applied to a variable that occurs as a free variable in a predicate logic expression.

expression with free variables

edge $(x, y) \wedge \operatorname{label}(y$, "Larnaca")
"There is an edge from x to y and the label of y is «Larnaca»."

The expression cannot be assigned a truth value based on a model; values for the variables would be required.

statement with bound variables

$\exists x \exists y$ (edge $(x, y) \wedge$ label $(y$, "Larnaca"))
"There are (possible values of) x and y
such that there is an edge from x to y and
the label of y is «Larnaca»."
K models the statement if the expression is True for at least one potential value in K of the bound variables (all values from the domain, e.g., all nodes in the knowledge graph).

In first-order predicate logic (usually just called first-order logic), the quantifiers "for all" (\forall, universal quantifier) and "there is" (\exists, existential quantifier) can be applied to variables that occur as arguments of predicates.

Square of opposition for quantifiers

Assume a given logical expression $F(x)$ contains a free variable x. The square of opposition visualizes for modes of binding the variable by using quantifiers:

$\forall x F(x)$	$\equiv \neg \exists x \neg F(x)$	"For all possible values of $x, F(x)$ holds."
$\forall x \neg F(x)$	$\equiv \neg \exists x F(x)$	"There is no value of x such that $F(x)$ holds."
$\exists x F(x)$	$\equiv \neg \forall x \neg F(x)$	"There is a value of x for which $F(x)$ holds."
$\exists x \neg F(x)$	$\equiv \neg \forall x F(x)$	" $F(x)$ does not hold for all possible values of $x . "$

De Morgan's laws for quantifiers

Example 4: a) Transform $\forall x(P(x) \wedge \exists y Q(x, y)) \rightarrow \neg \forall z P(z)$ into a semantically equivalent statement where only the negation, disjunction, and conjunction operators are used; negations should only occur within literals.
b) Simplify the statement as far as possible.
$\forall x(P(x) \wedge \exists y Q(x, y)) \rightarrow \neg \forall z P(z) \equiv \neg \forall x(P(x) \wedge \exists y Q(x, y)) \vee \neg \forall z P(z)$

$$
\equiv \exists x \neg(P(x) \wedge \exists y Q(x, y)) \quad \vee \exists z \neg P(z)
$$

$$
\equiv \exists x(\neg P(x) \vee \neg \exists y Q(x, y)) \vee \exists z \neg P(z)
$$

$$
\equiv \exists x(\neg P(x) \vee \forall y \neg Q(x, y)) \vee \exists z \neg P(z)
$$

De Morgan's laws

$\forall x F(x)$	$\equiv \neg \exists x \neg F(x)$
$\forall x \neg F(x)$	$\equiv \neg \exists x F(x)$
$\exists x F(x)$	$\equiv \neg \forall x \neg F(x)$
$\exists x \neg F(x)$	$\equiv \neg \forall x F(x)$

$$
\begin{aligned}
\neg(R \vee S) & \equiv \neg R \wedge \neg S \\
\neg(R \wedge S) & \equiv \neg R \vee \neg S
\end{aligned}
$$

De Morgan's laws for quantifiers

Example 4: a) Transform $\forall x(P(x) \wedge \exists y Q(x, y)) \rightarrow \neg \forall z P(z)$ into a semantically equivalent statement where only the negation, disjunction, and conjunction operators are used; negations should only occur within literals.
b) Simplify the statement as far as possible.
$\forall x(P(x) \wedge \exists y Q(x, y)) \rightarrow \neg \forall z P(z) \equiv \neg \forall x(P(x) \wedge \exists y Q(x, y)) \vee \neg \forall z P(z)$

$$
\equiv \exists x \neg(P(x) \wedge \exists y Q(x, y)) \quad \vee \exists z \neg P(z)
$$

$$
\equiv \exists x(\neg P(x) \vee \neg \exists y Q(x, y)) \vee \exists z \neg P(z)
$$

$$
\equiv \exists x(\neg P(x) \vee \forall y \neg Q(x, y)) \vee \exists z \neg P(z)
$$

De Morgan's laws

$\forall x F(x)$	$\equiv \neg \exists x \neg F(x)$
$\forall x \neg F(x)$	$\equiv \neg \exists x F(x)$
$\exists x F(x)$	$\equiv \neg x(\neg P(x) \vee \forall y \neg Q(x, y)) \vee \exists x \neg P(x)$
$\exists x \neg F(x)$	$\equiv \neg x \neg F(x)$
	$\equiv \exists x F(x)$

CO2412
 Computational Thinking

Resolution (tutorial 4.5)
Knowledge graph (tutorial 4.6)
Predicate logic
Quantifiers and first-order logic
Where opportunity creates success

