
Where opportunity creates success

CO2412
Computational Thinking
Resolution (tutorial 4.5)
Knowledge graph (tutorial 4.6)
Predicate logic
Quantifiers and first-order logic

15th March 2022CO2412

Resolution:
Tutorial 4.5 problem

315th March 2022CO2412

4.5.1 Concepts

Literals: Atomic statements p, q, …, and their negations ¬p, ¬q, …

Clauses: A conjunction (“and”) of literals, such as p ¬∧ q ¬∧ r, is a conjunctive
clause. A disjunction (“or”) of literals, such as ¬p ∨ q ∨ r, is a disjunctive clause.

Conjunctive normal form (CNF):
– A statement is in CNF if it is a conjunction of disjunctive clauses.
– It is in full CNF if all atomic statements appear in all disjunctive clauses.
– The full CNF version of a truth table has one clause per False valuation.

Entailment: R entails S if and only if every model of R is a model of S. (R ⊨ S.)

Inference: Deduction of an entailment following a rule or a system of rules.

Resolution: Inference technique applied to CNF statements based on the rule

(p ∨ L0 ∨ L1 …∨) (¬∧ p ∨ M0 ∨ M1 …∨) (⊨ L0 ∨ L1 …∨ ∨ M0 ∨ M1 …∨).

415th March 2022CO2412

4.5.1 Resolution (completeness for satisfiability)

Completeness of resolution:

– If a statement in CNF is a contradiction, an algorithm implementing
resolution as an inference method succeeds at proving this in all cases;
i.e., two clauses pi and ¬pi for the same atomic statement are deduced.

– The same applies to proving that multiple statements are inconsistent.
– If resolution does not detect a contradiction, the statement is satisfiable.
– To check whether R is a tautology, resolution can be applied to ¬R.

Entailment: R entails S if and only if every model of R is a model of S. (R ⊨ S.)

Inference: Deduction of an entailment following a rule or a system of rules.

Resolution: Inference technique applied to CNF statements based on the rule

(p ∨ L0 ∨ L1 …∨) (¬∧ p ∨ M0 ∨ M1 …∨) (⊨ L0 ∨ L1 …∨ ∨ M0 ∨ M1 …∨).

515th March 2022CO2412

Undirected graph; pAB representing “there is an edge between A and B,” etc.

How would we paraphrase the meaning of the propositional logic statements:

SA = ¬pAB ¬∨ pAC?

SB = pAB ¬↔ pBC?

SC = pAC ↔ pBC?

How many literals are there? Six: pAB , ¬pAB , pAC , ¬pAC , pBC , and ¬pBC .

4.5.2 From logic to graphs

or

or

or

A

B C

A

B C

A

B C

A

B C

A

B C

A

B C

no no
“Vertex A does not have degree 2.”

“Vertex A has degree 0 or 1.”

“Vertex B has degree 1.”

“Vertex C has degree 0 or 2.”

no

no

no

no
yes

yes

yes

yes

615th March 2022CO2412

4.5.3 Conjunctive normal form

or

or

or

A

B C

A

B C

A

B C

A

B C

A

B C

A

B C

no noSA = ¬pAB ¬∨ pAC

SB = pAB ¬↔ pBC

SC = pAC ↔ pBC

Transformation to CNF. Rule: (R ↔ S) (≡ R ¬∨ S) (¬∧ R ∨ S).

(already in CNF)

pAB ¬↔ pBC

 ≡ (pAB ¬¬∨ pBC) (¬∧ pAB ¬∨ pBC)

 ≡ (pAB ∨ pBC) (¬∧ pAB ¬∨ pBC)

pAC ¬↔ pBC

 ≡ (pAC ¬∨ pBC) (¬∧ pAC ∨ pBC)

no

no

no

no
yes

yes

yes

yes

Clauses: 0) ¬pAB ¬∨ pAC 1) pAB ∨ pBC 2) ¬pAB ¬∨ pBC 3) pAC ¬∨ pBC 4) ¬pAC ∨ pBC

715th March 2022CO2412

4.5.4 Consistency: Common model

SA = ¬pAB ¬∨ pAC

SB = pAB ¬↔ pBC

SC = pAC ↔ pBC

If multiple statements are consistent, they have a common model.

(¬pAB ¬∨ pAC)

(pAB ∨ pBC) (¬∧ pAB ¬∨ pBC)

(pAC ¬∨ pBC) (¬∧ pAC ∨ pBC)

“Vertex A has degree 0 or 1.”

“Vertex B has degree 1.”

“Vertex C has degree 0 or 2.”

A

B C

A

B C

(no)

(no)

(no)

Clauses: 0) ¬pAB ¬∨ pAC 1) pAB ∨ pBC 2) ¬pAB ¬∨ pBC 3) pAC ¬∨ pBC 4) ¬pAC ∨ pBC

815th March 2022CO2412

4.5.4 Consistency: Resolution

Clauses: 0) ¬pAB ¬∨ pAC 1) pAB ∨ pBC 2) ¬pAB ¬∨ pBC 3) pAC ¬∨ pBC 4) ¬pAC ∨ pBC

0) ¬pAB ¬∨ pAC

1) pAB ∨ pBC

resolves to 4) ¬pAC ∨ pBC

resolves to pAB ¬∨ pAB and pBC ¬∨ pBC

with 1) pAB ∨ pBC

with 2) ¬pAB ¬∨ pBC

(p ∨ L0 ∨ L1 …∨) (¬∧ p ∨ M0 ∨ M1 …∨) (⊨ L0 ∨ L1 …∨ ∨ M0 ∨ M1 …∨).

i = 1
while i < len(clauses):
 for j in range(i):
 if direct_contradiction(clauses[i], clauses[j]):
 return False
 resolved_clauses = resolve(clauses[i], clauses[j])
 for c in resolved_clauses:
 if should_be_appended(c, clauses):
 clauses.append(c)
 i += 1
return True

contradiction found if
the two clauses are

single opposite literals,
such as p2 and ¬p2

append if the resolved
clause is not redundant

and not tautological

915th March 2022CO2412

4.5.4 Consistency: Resolution

Clauses: 0) ¬pAB ¬∨ pAC 1) pAB ∨ pBC 2) ¬pAB ¬∨ pBC 3) pAC ¬∨ pBC 4) ¬pAC ∨ pBC

0) ¬pAB ¬∨ pAC

1) pAB ∨ pBC

0) ¬pAB ¬∨ pAC

1) pAB ∨ pBC

2) ¬pAB ¬∨ pBC

3) pAC ¬∨ pBC

0) ¬pAB ¬∨ pAC

2) ¬pAB ¬∨ pBC

4) ¬pAC ∨ pBC

resolves to 4) ¬pAC ∨ pBC

resolves to pAB ¬∨ pAB and pBC ¬∨ pBC

resolves to 2) ¬pAB ¬∨ pBC

resolves to 5) pAB ∨ pAC

resolves to 0) ¬pAB ¬∨ pAC

resolves to pAC ¬∨ pAC and pBC ¬∨ pBC

resolves to pAB ¬∨ pAB and pAC ¬∨ pAC

resolves to 3) pAC ¬∨ pBC

resolves to 1) pAB ∨ pBC

with 1) pAB ∨ pBC

with 2) ¬pAB ¬∨ pBC

with 3) pAC ¬∨ pBC

with 3) pAC ¬∨ pBC

with 4) ¬pAC ∨ pBC

with 4) ¬pAC ∨ pBC

with 5) pAB ∨ pAC

with 5) pAB ∨ pAC

with 5) pAB ∨ pAC

(p ∨ L0 ∨ L1 …∨) (¬∧ p ∨ M0 ∨ M1 …∨) (⊨ L0 ∨ L1 …∨ ∨ M0 ∨ M1 …∨).

15th March 2022CO2412

Knowledge graph:
Tutorial 4.6 problem

1115th March 2022CO2412

4.6.1 Paths and cycles in graphs

– A tree is hierarchical. Every link goes from one node to a subordinate
node. There is only one path from the root to any of the nodes in the
tree. No link goes back up again. In particular, there are no cycles.

– There is exactly one node, the root node, from which all nodes can be
reached. Each node is either a leaf, or it is a root for its own subtree.

forbidden
cycle

forbidden
diamond-
like path
structure

1215th March 2022CO2412

Example knowledge graph (see Jupyter notebook knowledge-graph).

4.6.1 Paths and cycles in graphs

has campus in

Preston

Larnaca

UCLan

Oliver Martin

has campus in

teaches at teaches at lives in

CO2412

has instructor

is
module

at

has instructor

lives in

How many cycles are there?

There are no cycles.

Why is the example
knowledge graph not a tree?

There are multiple diamond-
like structures (multiple paths
from one node to another).

1315th March 2022CO2412

4.6.1 Paths and cycles in graphs

Preston

Larnaca

UCLan

Oliver Martin

CO2412

How many length-5 paths?

There are no cycles.
(And no paths with length 5.)

in: 3; out: 2

in: 1; out: 0

What are the indegrees and outdegrees of the nodes? (See below.)

in: 3; out: 0

in: 1; out: 2

in: 0; out: 2

in: 1; out: 2

1415th March 2022CO2412

4.6.1 Paths and cycles in graphs

Preston

Larnaca

UCLan

Oliver Martin

CO2412

How many length-5 paths?

There are no cycles.
(And no paths with length 5.)

Paths of length 2 from each
vertex:

Sum of the outdegrees of all
successor vertices.

in: 3; out: 2

in: 1; out: 0

What are the indegrees and outdegrees of the nodes? (See below.)

in: 3; out: 0

in: 1; out: 2

in: 0; out: 2

in: 1; out: 2
2 2

2

2

2 0
0

0

0

length-2
paths: 0

length-2
paths: 0

length-2
paths: 0

length-2
paths: 2 length-2

paths: 2

length-2
paths: 6

1515th March 2022CO2412

4.6.1 Paths and cycles in graphs

Preston

Larnaca

UCLan

Oliver Martin

CO2412

Initialization

for v in vertices:
 v.count = 1

Iteration

for i in range(m):
 for v in vertices:
 v.prev = v.count
 v.count = 0
 for e in edges:
 e.source.count += e.target.prev

Algorithm for computing the no. of paths with length m (consisting of m edges):

in: 0; out: 2

2 2

0

0

0 0
0

0

0

length-3
paths: 0

length-3
paths: 0

length-3
paths: 0

length-3
paths: 0 length-3

paths: 0

length-3
paths: 4

time?

space?

1615th March 2022CO2412

breadth-first tree (one out of three)

4.6.2 Spanning trees

Preston

Larnaca

UCLan

Oliver Martin

CO2412depth 0
(root node)

depth 1

depth 1

depth 1

depth 2 Pr

La

UC

Ol Ma

CO

Pr

La

UC

Ol Ma

CO

depth-first trees (examples)

0

1a

1b

2

3
4

1a

1b 1c

2

3

depth 2

1715th March 2022CO2412

Are there any nodes x, y
for which the logical expression
edge(x, y) label(y, "Larnaca")∧

becomes True?

Yes!
A node x exists, and a node y exists,

such that this is True:
x = vertex 2; y = vertex 1.

Are there any nodes x, y
for which the logical expression

has_campus_in(x, y) label(x, "UCLan")→
becomes False?

No!
The expression is True for all x and y.

4.6.3 Knowledge graphs and predicates

has campus in

Preston

Larnaca

UCLan

Oliver Martin

has campus in

teaches at teaches at lives in

CO2412
has instructor

is
module

at

has instructor

lives in

vertex 0

vertex 1

Introduction of quantifiers (“exists”, “for all”):

vertex 2

vertex 3

vertex 4

vertex 5

15th March 2022CO2412

Predicate logic

1915th March 2022CO2412

Statements in propositional logic are constructed from a finite number of
atomic statements in combination with the five logical operators for
conjunction, disjunction, negation, implication, and equivalence.

To extend this to predicate logic, we replace atomic statements by predicates
in combination with variables (x, y, …) and values that can be used as argu-
ments of the predicates. Predicates are functions with boolean return values.

Example (Erciyes): Define P(x, y, z) by the truth criterion x + y = z2.

P(2, 7, 3) evaluates to True;
P(5, 11, 4) evaluates to True;
P(3, 2, 4) evaluates to False.

There, P is a ternary predicate (three arguments).

Predicate logic

P(5, 11, 4) → P(3, 2, 4)
evalutes to False.

2015th March 2022CO2412

Unary and binary predicates

has campus in

Preston

Larnaca

UCLan

Oliver Martin

has campus in

teaches at teaches at lives in

CO2412
has instructor

is
module

at

has instructor

lives in

value v0

value v1

value v2

value v3

value v4

value v5

Module

Instructor

Instructor

City

City

University

Knowledge graphs are best
suitable to visualize unary
predicates (one argument) and
binary predicates (two
arguments).

Binary predicates, visualized as
edges, represent relations
between two objects.

Unary predicates can represent
properties, types, or similar
features of single objects.

“Model” or knowledge graph K

Module(v4) label(∧ v4, “CO2412”)

teaches_at(v3, v2) ¬∧ teaches_at(v2, v3)

2115th March 2022CO2412

K satisfies the predicate logic statements:

S0 = teaches_at(v3, v2) ¬∧ teaches_at(v2, v3)

S1 = Module(v4) label(∧ v4, “CO2412”)

We say, “K models S0” or “K is a model of S1”.

Notation: K ⊨ S0 and K ⊨ S1.

The expression has_campus_in(x, y) contains
free variables: Variables with an unspecified
value. Its truth value, even for a given K,
depends on the values assigned to x and y.

Models of predicate logic statements

K is a model for (i.e., includes)
all the predicates and values
on the left, but not a model of
all that can be said about them,
e.g., K ⊭ teaches_at(v2, v3).

Binary predicates, visualized as
edges, represent relations
between two objects.

Unary predicates can represent
properties, types, or similar
features of single objects.

teaches_at(v3, v2) ¬∧ teaches_at(v2, v3)

“Model” or knowledge graph K

Module(v4) label(∧ v4, “CO2412”)

2215th March 2022CO2412

All observations on propositional logic continue to apply if we replace all the
predicate-argument combinations by atomic statements.

What predicate logic retains from propositional logic

 ⊨ p (∨ p → q) ⊨ (is_greater_than(v, w) ∨
(is_greater_than(v, w) is_even(→ w))

Tautologies, contradictions, satisfiability, and falsifiability

tautological
(unfalsifiable)

contradictory
(unsatisfiable)

satisfiable falsifiable

is not
is also

is opposite of

is opposite of

is not
is also

“true for all
models”

“false for
all models”

“false for some
model(s)”

“true for some
model(s)”

2315th March 2022CO2412

All observations on propositional logic continue to apply if we replace all the
predicate-argument combinations by atomic statements.

What predicate logic retains from propositional logic

(¬p ∨ q), (¬q ∨ ¬r) ¬⊨ p ∨ ¬r ¬is_father_of(v, w) Human(∨ v),
¬Human(v) ¬Robot(∨ v)

⊨ ¬is_father_of(v, w) ¬Robot(∨ v)

Semantic equivalence and entailment

 ⊨ p (∨ p → q) ⊨ (is_greater_than(v, w) ∨
(is_greater_than(v, w) is_even(→ w))

Tautologies, contradictions, satisfiability, and falsifiability

p ¬↔ q (≡ p ∨ q) (∧ ¬p ¬∨ q) identical(x, y) ¬different(↔ x, y)

≡ (identical(x, y) different(∨ x, y))
 ∧ (¬identical(x, y) ¬different(∨ x, y))

literals in propositional logic:
atomic statements and their negations

literals in predicate logic:
predicates and their negations

a disjunctive
clause

a disjunctive
clause

15th March 2022CO2412

Quantifiers and
first-order logic

2515th March 2022CO2412

The universal quantifier, denoted and read as “for all∀ ,” is applied to a
variable that occurs as a free variable in a predicate logic expression.

Universal quantifier

has_campus_in(x, y) label(→ x, "UCLan")

expression with free variables statement with bound variables

∀x ∀y (has_campus_in(x, y) label(→ x, "UCLan"))

“If x has a campus in y, the
label of x is «UCLan».”

“For all possible values of x and y, if x has
a campus in y, the label of x is «UCLan».”

In first-order predicate logic (usually just called first-order logic), the quan-
tifiers “for all” (∀, universal quantifier) and “there is” (∃, existential quantifier)
can be applied to variables that occur as arguments of predicates.

The expression cannot be
assigned a truth value based on

a model; values for the
variables would be required.

K models the statement if the expression is
True for all potential values in K of the

bound variables (all values from the domain,
e.g., all nodes in the knowledge graph).

2615th March 2022CO2412

The existential quantifier, denoted ∃ and read “there is” or “there exists,” is ap-
plied to a variable that occurs as a free variable in a predicate logic expression.

Existential quantifier

edge(x, y) label(∧ y, "Larnaca")

expression with free variables statement with bound variables

∃x ∃y (edge(x, y) label(∧ y, "Larnaca"))

“There is an edge from x to y and
the label of y is «Larnaca».”

“There are (possible values of) x and y
such that there is an edge from x to y and

the label of y is «Larnaca».”

In first-order predicate logic (usually just called first-order logic), the quan-
tifiers “for all” (∀, universal quantifier) and “there is” (∃, existential quantifier)
can be applied to variables that occur as arguments of predicates.

The expression cannot be
assigned a truth value based on

a model; values for the
variables would be required.

K models the statement if the expression is
True for at least one potential value in K of the
bound variables (all values from the domain,

e.g., all nodes in the knowledge graph).

2715th March 2022CO2412

Square of opposition for quantifiers

universal (∀x) ∀x¬ ¬≡ ∃x

is also

is opposite of

is opposite of

is not
(outer

negation)
is also

“true for all
values”

“false for
all values”

“false for some
value(s)”

“true for some
value(s)” existential (∃x)

Assume a given logical expression F(x) contains a free variable x. The square
of opposition visualizes for modes of binding the variable by using quantifiers:

∃x¬ ¬≡ ∀x

(inner negation)

(inner negation)

is not
(outer

negation)

∀x F(x) ≡ ¬∃x ¬F(x)
∀x ¬F(x) ≡ ¬∃x F(x)
∃x F(x) ≡ ¬∀x ¬F(x)
∃x ¬F(x) ≡ ¬∀x F(x)

“For all possible values of x, F(x) holds.”
“There is no value of x such that F(x) holds.”
“There is a value of x for which F(x) holds.”
“F(x) does not hold for all possible values of x.”

2815th March 2022CO2412

De Morgan’s laws for quantifiers

∀x F(x) ≡ ¬∃x ¬F(x)
∀x ¬F(x) ≡ ¬∃x F(x)
∃x F(x) ≡ ¬∀x ¬F(x)
∃x ¬F(x) ≡ ¬∀x F(x)

De Morgan’s laws

¬(R ∨ S) ¬≡ R ¬∧ S
¬(R ∧ S) ¬≡ R ¬∨ S

Example 4: a) Transform ∀x (P(x) ∧ ∃y Q(x, y)) ¬→ ∀z P(z) into a semantically
equivalent statement where only the negation, disjunction, and conjunction
operators are used; negations should only occur within literals.

b) Simplify the statement as far as possible.

∀x (P(x) ∧ ∃y Q(x, y)) ¬→ ∀z P(z) ≡ ¬∀x (P(x) ∧ ∃y Q(x, y)) ∨ ¬∀z P(z)
≡ ∃x ¬(P(x) ∧ ∃y Q(x, y)) ∨ ∃z ¬P(z)
≡ ∃x (¬P(x) ¬∨ ∃y Q(x, y)) ∨ ∃z ¬P(z)
≡ ∃x (¬P(x) ∨ ∀y ¬Q(x, y)) ∨ ∃z ¬P(z)

2915th March 2022CO2412

De Morgan’s laws for quantifiers

∀x F(x) ≡ ¬∃x ¬F(x)
∀x ¬F(x) ≡ ¬∃x F(x)
∃x F(x) ≡ ¬∀x ¬F(x)
∃x ¬F(x) ≡ ¬∀x F(x)

De Morgan’s laws

Example 4: a) Transform ∀x (P(x) ∧ ∃y Q(x, y)) ¬→ ∀z P(z) into a semantically
equivalent statement where only the negation, disjunction, and conjunction
operators are used; negations should only occur within literals.

b) Simplify the statement as far as possible.

∀x (P(x) ∧ ∃y Q(x, y)) ¬→ ∀z P(z) ≡ ¬∀x (P(x) ∧ ∃y Q(x, y)) ∨ ¬∀z P(z)
≡ ∃x ¬(P(x) ∧ ∃y Q(x, y)) ∨ ∃z ¬P(z)
≡ ∃x (¬P(x) ¬∨ ∃y Q(x, y)) ∨ ∃z ¬P(z)
≡ ∃x (¬P(x) ∨ ∀y ¬Q(x, y)) ∨ ∃z ¬P(z)

≡ ∃x (¬P(x) ∨ ∀y ¬Q(x, y)) ∨ ∃x ¬P(x)

≡ ∃x ¬P(x) ∨ ∃x∀y ¬Q(x, y)

Where opportunity creates success

CO2412
Computational Thinking
Resolution (tutorial 4.5)
Knowledge graph (tutorial 4.6)
Predicate logic
Quantifiers and first-order logic

