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Resolution:
Tutorial 4.5 problem
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4.5.1 Concepts

Literals: Atomic statements p, q, …, and their negations ¬p, ¬q, …

Clauses: A conjunction (“and”) of literals, such as p  ¬∧ q  ¬∧ r, is a conjunctive 
clause. A disjunction (“or”) of literals, such as ¬p  ∨ q  ∨ r, is a disjunctive clause.

Conjunctive normal form (CNF):
– A statement is in CNF if it is a conjunction of disjunctive clauses.
– It is in full CNF if all atomic statements appear in all disjunctive clauses.
– The full CNF version of a truth table has one clause per False valuation.

Entailment: R entails S if and only if every model of R is a model of S. (R  ⊨ S.)

Inference: Deduction of an entailment following a rule or a system of rules.

Resolution: Inference technique applied to CNF statements based on the rule

(p  ∨ L0  ∨ L1  …∨ )    (¬∧ p  ∨ M0  ∨ M1  …∨ )      (⊨ L0  ∨ L1  …∨   ∨ M0  ∨ M1  …∨ ).
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4.5.1 Resolution (completeness for satisfiability)

Completeness of resolution:

– If a statement in CNF is a contradiction, an algorithm implementing 
resolution as an inference method succeeds at proving this in all cases; 
i.e., two clauses pi and ¬pi for the same atomic statement are deduced.

– The same applies to proving that multiple statements are inconsistent.
– If resolution does not detect a contradiction, the statement is satisfiable.
– To check whether R is a tautology, resolution can be applied to ¬R.

Entailment: R entails S if and only if every model of R is a model of S. (R  ⊨ S.)

Inference: Deduction of an entailment following a rule or a system of rules.

Resolution: Inference technique applied to CNF statements based on the rule

(p  ∨ L0  ∨ L1  …∨ )    (¬∧ p  ∨ M0  ∨ M1  …∨ )      (⊨ L0  ∨ L1  …∨   ∨ M0  ∨ M1  …∨ ).
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Undirected graph; pAB representing “there is an edge between A and B,” etc.

How would we paraphrase the meaning of the propositional logic statements:

SA  =  ¬pAB  ¬∨ pAC?

SB  =  pAB  ¬↔ pBC?

SC  =  pAC  ↔ pBC?

How many literals are there? Six:  pAB ,  ¬pAB ,  pAC ,  ¬pAC ,  pBC ,  and  ¬pBC .

4.5.2 From logic to graphs

or

or

or

A

B C

A

B C

A

B C

A

B C

A

B C

A

B C

no no
“Vertex A does not have degree 2.”

“Vertex A has degree 0 or 1.”

“Vertex B has degree 1.”

“Vertex C has degree 0 or 2.”

no

no

no

no
yes

yes

yes

yes
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4.5.3 Conjunctive normal form

or

or

or

A

B C

A

B C

A

B C

A

B C

A

B C

A

B C

no noSA  =  ¬pAB  ¬∨ pAC

SB  =  pAB  ¬↔ pBC

SC  =  pAC  ↔ pBC

Transformation to CNF.  Rule:  (R  ↔ S)    (≡ R  ¬∨ S)  (¬∧ R  ∨ S).

(already in CNF)

pAB  ¬↔ pBC

 ≡ (pAB  ¬¬∨ pBC)  (¬∧ pAB  ¬∨ pBC)

 ≡ (pAB  ∨ pBC)  (¬∧ pAB  ¬∨ pBC)

pAC  ¬↔ pBC

 ≡ (pAC  ¬∨ pBC)  (¬∧ pAC  ∨ pBC)

no

no

no

no
yes

yes

yes

yes

Clauses:  0) ¬pAB  ¬∨ pAC  1) pAB  ∨ pBC  2) ¬pAB  ¬∨ pBC  3) pAC  ¬∨ pBC  4) ¬pAC  ∨ pBC
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4.5.4 Consistency: Common model

SA  =  ¬pAB  ¬∨ pAC

SB  =  pAB  ¬↔ pBC

SC  =  pAC  ↔ pBC

If multiple statements are consistent, they have a common model.

(¬pAB  ¬∨ pAC)

(pAB  ∨ pBC)  (¬∧ pAB  ¬∨ pBC)

(pAC  ¬∨ pBC)  (¬∧ pAC  ∨ pBC)

“Vertex A has degree 0 or 1.”

“Vertex B has degree 1.”

“Vertex C has degree 0 or 2.”

A

B C

A

B C

(no)

(no)

(no)

Clauses:  0) ¬pAB  ¬∨ pAC  1) pAB  ∨ pBC  2) ¬pAB  ¬∨ pBC  3) pAC  ¬∨ pBC  4) ¬pAC  ∨ pBC
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4.5.4 Consistency: Resolution

Clauses:  0) ¬pAB  ¬∨ pAC  1) pAB  ∨ pBC  2) ¬pAB  ¬∨ pBC  3) pAC  ¬∨ pBC  4) ¬pAC  ∨ pBC

0) ¬pAB  ¬∨ pAC

1) pAB  ∨ pBC

resolves to  4) ¬pAC  ∨ pBC

resolves to  pAB  ¬∨ pAB  and  pBC  ¬∨ pBC

with  1) pAB  ∨ pBC

with  2) ¬pAB  ¬∨ pBC

(p  ∨ L0  ∨ L1  …∨ )    (¬∧ p  ∨ M0  ∨ M1  …∨ )      (⊨ L0  ∨ L1  …∨   ∨ M0  ∨ M1  …∨ ).

i = 1
while i < len(clauses):
    for j in range(i):
        if direct_contradiction(clauses[i], clauses[j]):
            return False
        resolved_clauses = resolve(clauses[i], clauses[j])
        for c in resolved_clauses:
            if should_be_appended(c, clauses):
                clauses.append(c)
    i += 1
return True

contradiction found if 
the two clauses are 

single opposite literals, 
such as p2 and ¬p2

append if the resolved 
clause is not redundant 

and not tautological
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4.5.4 Consistency: Resolution

Clauses:  0) ¬pAB  ¬∨ pAC  1) pAB  ∨ pBC  2) ¬pAB  ¬∨ pBC  3) pAC  ¬∨ pBC  4) ¬pAC  ∨ pBC

0) ¬pAB  ¬∨ pAC

1) pAB  ∨ pBC

0) ¬pAB  ¬∨ pAC

1) pAB  ∨ pBC

2) ¬pAB  ¬∨ pBC

3) pAC  ¬∨ pBC

0) ¬pAB  ¬∨ pAC

2) ¬pAB  ¬∨ pBC

4) ¬pAC  ∨ pBC

resolves to  4) ¬pAC  ∨ pBC

resolves to  pAB  ¬∨ pAB  and  pBC  ¬∨ pBC

resolves to  2) ¬pAB  ¬∨ pBC

resolves to  5) pAB  ∨ pAC

resolves to  0) ¬pAB  ¬∨ pAC

resolves to  pAC  ¬∨ pAC  and  pBC  ¬∨ pBC

resolves to  pAB  ¬∨ pAB  and  pAC  ¬∨ pAC

resolves to  3) pAC  ¬∨ pBC

resolves to  1) pAB  ∨ pBC

with  1) pAB  ∨ pBC

with  2) ¬pAB  ¬∨ pBC

with  3) pAC  ¬∨ pBC

with  3) pAC  ¬∨ pBC

with  4) ¬pAC  ∨ pBC

with  4) ¬pAC  ∨ pBC

with  5) pAB  ∨ pAC

with  5) pAB  ∨ pAC

with  5) pAB  ∨ pAC

(p  ∨ L0  ∨ L1  …∨ )    (¬∧ p  ∨ M0  ∨ M1  …∨ )      (⊨ L0  ∨ L1  …∨   ∨ M0  ∨ M1  …∨ ).
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Knowledge graph:
Tutorial 4.6 problem



1115th March 2022CO2412

4.6.1 Paths and cycles in graphs

– A tree is hierarchical. Every link goes from one node to a subordinate 
node. There is only one path from the root to any of the nodes in the 
tree. No link goes back up again. In particular, there are no cycles.

– There is exactly one node, the root node, from which all nodes can be 
reached. Each node is either a leaf, or it is a root for its own subtree.

forbidden 
cycle

forbidden 
diamond-
like path 
structure
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Example knowledge graph (see Jupyter notebook knowledge-graph).

4.6.1 Paths and cycles in graphs

has campus in

Preston

Larnaca

UCLan

Oliver Martin

has campus in

teaches at teaches at lives in

CO2412

has instructor

is 
module 

at

has instructor

lives in

How many cycles are there?

There are no cycles.

Why is the example 
knowledge graph not a tree?

There are multiple diamond-
like structures (multiple paths 
from one node to another).
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4.6.1 Paths and cycles in graphs

Preston

Larnaca

UCLan

Oliver Martin

CO2412

How many length-5 paths?

There are no cycles.
(And no paths with length 5.)

in: 3;  out: 2

in: 1;  out: 0

What are the indegrees and outdegrees of the nodes? (See below.)

in: 3;  out: 0

in: 1;  out: 2

in: 0;  out: 2

in: 1;  out: 2
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4.6.1 Paths and cycles in graphs

Preston

Larnaca

UCLan

Oliver Martin

CO2412

How many length-5 paths?

There are no cycles.
(And no paths with length 5.)

Paths of length 2 from each 
vertex:

Sum of the outdegrees of all 
successor vertices.

in: 3;  out: 2

in: 1;  out: 0

What are the indegrees and outdegrees of the nodes? (See below.)

in: 3;  out: 0

in: 1;  out: 2

in: 0;  out: 2

in: 1;  out: 2
2 2

2

2

2 0
0

0

0

length-2 
paths: 0

length-2 
paths: 0

length-2 
paths: 0

length-2 
paths: 2 length-2 

paths: 2

length-2 
paths: 6
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4.6.1 Paths and cycles in graphs

Preston

Larnaca

UCLan

Oliver Martin

CO2412

Initialization

for v in vertices:
    v.count = 1

Iteration

for i in range(m):
    for v in vertices:
        v.prev = v.count
        v.count = 0
    for e in edges:
        e.source.count += e.target.prev

Algorithm for computing the no. of paths with length m (consisting of m edges):

in: 0;  out: 2

2 2

0

0

0 0
0

0

0

length-3 
paths: 0

length-3 
paths: 0

length-3 
paths: 0

length-3 
paths: 0 length-3 

paths: 0

length-3 
paths: 4

time?

space?
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breadth-first tree (one out of three)

4.6.2 Spanning trees

Preston

Larnaca

UCLan

Oliver Martin

CO2412depth 0
(root node)

depth 1

depth 1

depth 1

depth 2 Pr

La

UC

Ol Ma

CO

Pr

La

UC

Ol Ma

CO

depth-first trees (examples)

0

1a

1b

2

3
4

1a

1b 1c

2

3

depth 2
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Are there any nodes x, y
for which the logical expression
edge(x, y)  label(y, "Larnaca")∧

becomes True?

Yes!
A node x exists, and a node y exists,

such that this is True:
x = vertex 2; y = vertex 1.

Are there any nodes x, y
for which the logical expression

has_campus_in(x, y)  label(x, "UCLan")→
becomes False?

No!
The expression is True for all x and y.

4.6.3 Knowledge graphs and predicates

has campus in

Preston

Larnaca

UCLan

Oliver Martin

has campus in

teaches at teaches at lives in

CO2412
has instructor

is 
module 

at

has instructor

lives in

vertex 0

vertex 1

Introduction of quantifiers (“exists”, “for all”):

vertex 2

vertex 3

vertex 4

vertex 5
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Predicate logic
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Statements in propositional logic are constructed from a finite number of 
atomic statements in combination with the five logical operators for 
conjunction, disjunction, negation, implication, and equivalence.

To extend this to predicate logic, we replace atomic statements by predicates 
in combination with variables (x, y, …) and values that can be used as argu-
ments of the predicates. Predicates are functions with boolean return values.

Example (Erciyes): Define P(x, y, z) by the truth criterion x + y = z2.

P(2, 7, 3) evaluates to True;
P(5, 11, 4) evaluates to True;
P(3, 2, 4) evaluates to False.

There, P is a ternary predicate (three arguments).

Predicate logic

P(5, 11, 4)  → P(3, 2, 4)
evalutes to False.
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Unary and binary predicates

has campus in

Preston

Larnaca

UCLan

Oliver Martin

has campus in

teaches at teaches at lives in

CO2412
has instructor

is 
module 

at

has instructor

lives in

value v0

value v1

value v2

value v3

value v4

value v5

Module

Instructor

Instructor

City

City

University

Knowledge graphs are best 
suitable to visualize unary 
predicates (one argument) and 
binary predicates (two 
arguments).

Binary predicates, visualized as 
edges, represent relations 
between two objects.

Unary predicates can represent 
properties, types, or similar 
features of single objects.

“Model” or knowledge graph K

Module(v4)  label(∧ v4, “CO2412”)

teaches_at(v3, v2)  ¬∧ teaches_at(v2, v3)
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K satisfies the predicate logic statements:

S0  =  teaches_at(v3, v2)  ¬∧ teaches_at(v2, v3)

S1  =  Module(v4)  label(∧ v4, “CO2412”)

We say, “K models S0” or “K is a model of S1”. 

Notation:  K  ⊨ S0  and  K  ⊨ S1.

The expression has_campus_in(x, y) contains 
free variables: Variables with an unspecified 
value. Its truth value, even for a given K, 
depends on the values assigned to x and y.

Models of predicate logic statements

K is a model for (i.e., includes) 
all the predicates and values 
on the left, but not a model of 
all that can be said about them, 
e.g.,  K  ⊭  teaches_at(v2, v3).

Binary predicates, visualized as 
edges, represent relations 
between two objects.

Unary predicates can represent 
properties, types, or similar 
features of single objects.

teaches_at(v3, v2)  ¬∧ teaches_at(v2, v3)

“Model” or knowledge graph K

Module(v4)  label(∧ v4, “CO2412”)
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All observations on propositional logic continue to apply if we replace all the 
predicate-argument combinations by atomic statements.

What predicate logic retains from propositional logic

  ⊨ p   (∨ p  → q)   ⊨ (is_greater_than(v, w)  ∨
(is_greater_than(v, w)  is_even(→ w))

Tautologies, contradictions, satisfiability, and falsifiability

tautological
(unfalsifiable)

contradictory
(unsatisfiable)

satisfiable falsifiable

is not
is also

is opposite of

is opposite of

is not
is also

“true for all 
models”

“false for 
all models”

“false for some 
model(s)”

“true for some 
model(s)”
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All observations on propositional logic continue to apply if we replace all the 
predicate-argument combinations by atomic statements.

What predicate logic retains from propositional logic

(¬p  ∨ q), (¬q  ∨ ¬r)    ¬⊨ p  ∨ ¬r ¬is_father_of(v, w)  Human(∨ v),
¬Human(v)  ¬Robot(∨ v)

⊨ ¬is_father_of(v, w)  ¬Robot(∨ v)

Semantic equivalence and entailment

  ⊨ p   (∨ p  → q)   ⊨ (is_greater_than(v, w)  ∨
(is_greater_than(v, w)  is_even(→ w))

Tautologies, contradictions, satisfiability, and falsifiability

p  ¬↔ q    (≡ p  ∨ q)  (∧ ¬p  ¬∨ q) identical(x, y)  ¬different(↔ x, y)

≡ (identical(x, y)  different(∨ x, y))
      ∧ (¬identical(x, y)  ¬different(∨ x, y))

literals in propositional logic:
atomic statements and their negations

literals in predicate logic:
predicates and their negations

a disjunctive 
clause

a disjunctive 
clause
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Quantifiers and
first-order logic
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The universal quantifier, denoted  and read as “for all∀ ,” is applied to a 
variable that occurs as a free variable in a predicate logic expression.

Universal quantifier

has_campus_in(x, y)  label(→ x, "UCLan")

expression with free variables statement with bound variables

∀x ∀y  (has_campus_in(x, y)  label(→ x, "UCLan"))

“If x has a campus in y, the 
label of x is «UCLan».”

“For all possible values of x and y, if x has 
a campus in y, the label of x is «UCLan».”

In first-order predicate logic (usually just called first-order logic), the quan-
tifiers “for all” (∀, universal quantifier) and “there is” (∃, existential quantifier) 
can be applied to variables that occur as arguments of predicates.

The expression cannot be 
assigned a truth value based on 

a model; values for the 
variables would be required.

K models the statement if the expression is 
True for all potential values in K of the 

bound variables (all values from the domain, 
e.g., all nodes in the knowledge graph).
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The existential quantifier, denoted ∃ and read “there is” or “there exists,” is ap-
plied to a variable that occurs as a free variable in a predicate logic expression.

Existential quantifier

edge(x, y)  label(∧ y, "Larnaca")

expression with free variables statement with bound variables

∃x ∃y  (edge(x, y)  label(∧ y, "Larnaca"))

“There is an edge from x to y and 
the label of y is «Larnaca».”

“There are (possible values of) x and y 
such that there is an edge from x to y and 

the label of y is «Larnaca».”

In first-order predicate logic (usually just called first-order logic), the quan-
tifiers “for all” (∀, universal quantifier) and “there is” (∃, existential quantifier) 
can be applied to variables that occur as arguments of predicates.

The expression cannot be 
assigned a truth value based on 

a model; values for the 
variables would be required.

K models the statement if the expression is 
True for at least one potential value in K of the 
bound variables (all values from the domain, 

e.g., all nodes in the knowledge graph).
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Square of opposition for quantifiers

universal (∀x) ∀x¬    ¬≡ ∃x

is also

is opposite of

is opposite of

is not 
(outer 

negation)
is also

“true for all 
values”

“false for 
all values”

“false for some 
value(s)”

“true for some 
value(s)” existential (∃x)

Assume a given logical expression F(x) contains a free variable x. The square 
of opposition visualizes for modes of binding the variable by using quantifiers:

∃x¬    ¬≡ ∀x

(inner negation)

(inner negation)

is not 
(outer 

negation)

∀x F(x) ≡ ¬∃x ¬F(x)
∀x ¬F(x) ≡ ¬∃x F(x)
∃x F(x) ≡ ¬∀x ¬F(x)
∃x ¬F(x) ≡ ¬∀x F(x)

“For all possible values of x, F(x) holds.”
“There is no value of x such that F(x) holds.”
“There is a value of x for which F(x) holds.”
“F(x) does not hold for all possible values of x.”
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De Morgan’s laws for quantifiers

∀x F(x) ≡ ¬∃x ¬F(x)
∀x ¬F(x) ≡ ¬∃x F(x)
∃x F(x) ≡ ¬∀x ¬F(x)
∃x ¬F(x) ≡ ¬∀x F(x)

De Morgan’s laws

¬(R  ∨ S)    ¬≡ R  ¬∧ S
¬(R  ∧ S)    ¬≡ R  ¬∨ S

Example 4: a) Transform ∀x (P(x)  ∧ ∃y Q(x, y))    ¬→ ∀z P(z)  into a semantically 
equivalent statement where only the negation, disjunction, and conjunction 
operators are used; negations should only occur within literals.

b) Simplify the statement as far as possible.

∀x (P(x)  ∧ ∃y Q(x, y))    ¬→ ∀z P(z) ≡ ¬∀x (P(x)  ∧ ∃y Q(x, y))   ∨ ¬∀z P(z)
≡ ∃x ¬(P(x)  ∧ ∃y Q(x, y))   ∨ ∃z ¬P(z)
≡ ∃x (¬P(x)  ¬∨ ∃y Q(x, y)) ∨ ∃z ¬P(z)
≡ ∃x (¬P(x)  ∨ ∀y ¬Q(x, y)) ∨ ∃z ¬P(z)
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De Morgan’s laws for quantifiers

∀x F(x) ≡ ¬∃x ¬F(x)
∀x ¬F(x) ≡ ¬∃x F(x)
∃x F(x) ≡ ¬∀x ¬F(x)
∃x ¬F(x) ≡ ¬∀x F(x)

De Morgan’s laws

Example 4: a) Transform ∀x (P(x)  ∧ ∃y Q(x, y))    ¬→ ∀z P(z)  into a semantically 
equivalent statement where only the negation, disjunction, and conjunction 
operators are used; negations should only occur within literals.

b) Simplify the statement as far as possible.

∀x (P(x)  ∧ ∃y Q(x, y))    ¬→ ∀z P(z) ≡ ¬∀x (P(x)  ∧ ∃y Q(x, y))   ∨ ¬∀z P(z)
≡ ∃x ¬(P(x)  ∧ ∃y Q(x, y))   ∨ ∃z ¬P(z)
≡ ∃x (¬P(x)  ¬∨ ∃y Q(x, y)) ∨ ∃z ¬P(z)
≡ ∃x (¬P(x)  ∨ ∀y ¬Q(x, y)) ∨ ∃z ¬P(z)

≡ ∃x (¬P(x)  ∨ ∀y ¬Q(x, y)) ∨ ∃x ¬P(x)

≡ ∃x ¬P(x)    ∨ ∃x∀y ¬Q(x, y)
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