

CO2412 Computational Thinking

Resolution (tutorial 4.5) Knowledge graph (tutorial 4.6) Predicate logic Quantifiers and first-order logic

Where opportunity creates success

Resolution: Tutorial 4.5 problem

4.5.1 Concepts

Literals: Atomic statements $p, q, ..., and their negations <math>\neg p, \neg q, ...$

Clauses: A conjunction ("and") of literals, such as $p \land \neg q \land \neg r$, is a conjunctive clause. A disjunction ("or") of literals, such as $\neg p \lor q \lor r$, is a disjunctive clause.

Conjunctive normal form (CNF):

- A statement is in CNF if it is a **conjunction of disjunctive clauses**.
- It is in **full CNF** if all atomic statements appear in all disjunctive clauses.
- The full CNF version of a truth table has one clause per **False** valuation.

Entailment: *R* entails *S* if and only if every model of *R* is a model of *S*. ($R \models S$.)

Inference: Deduction of an entailment following a rule or a system of rules.

Resolution: Inference technique applied to CNF statements based on the rule

 $(\rho \vee L_0 \vee L_1 \vee \ldots) \wedge (\neg \rho \vee M_0 \vee M_1 \vee \ldots) \models (L_0 \vee L_1 \vee \ldots \vee M_0 \vee M_1 \vee \ldots).$

4.5.1 Resolution (completeness for satisfiability)

Completeness of resolution:

- If a statement in CNF is a contradiction, an algorithm implementing resolution as an inference method succeeds at proving this in all cases;
 i.e., two clauses p_i and ¬p_i for the same atomic statement are deduced.
- The same applies to proving that multiple statements are **inconsistent**.
- If resolution does not detect a contradiction, the statement is **satisfiable**.
- To check whether R is a **tautology**, resolution can be applied to $\neg R$.

Entailment: *R* entails *S* if and only if every model of *R* is a model of *S*. ($R \models S$.) **Inference:** Deduction of an entailment following a rule or a system of rules. **Resolution:** Inference technique applied to CNF statements based on the rule ($p \lor L_0 \lor L_1 \lor ...$) $\land (\neg p \lor M_0 \lor M_1 \lor ...) \models (L_0 \lor L_1 \lor ... \lor M_0 \lor M_1 \lor ...$).

4.5.2 From logic to graphs

Undirected graph; p_{AB} representing "there is an edge between A and B," etc.

How would we paraphrase the meaning of the propositional logic statements:

How many literals are there? Six: p_{AB} , $\neg p_{AB}$, p_{AC} , $\neg p_{AC}$, p_{BC} , and $\neg p_{BC}$.

CO2412

4.5.3 Conjunctive normal form

Transformation to CNF. Rule: $(R \leftrightarrow S) \equiv (R \vee \neg S) \land (\neg R \vee S)$.

Clauses: 0) $\neg p_{AB} \vee \neg p_{AC}$ 1) $p_{AB} \vee p_{BC}$ 2) $\neg p_{AB} \vee \neg p_{BC}$ 3) $p_{AC} \vee \neg p_{BC}$ 4) $\neg p_{AC} \vee p_{BC}$

CO2412

4.5.4 Consistency: Common model

If multiple statements are consistent, they have a common model.

Clauses: 0) $\neg p_{AB} \vee \neg p_{AC}$ 1) $p_{AB} \vee p_{BC}$ 2) $\neg p_{AB} \vee \neg p_{BC}$ 3) $p_{AC} \vee \neg p_{BC}$ 4) $\neg p_{AC} \vee p_{BC}$

CO2412

4.5.4 Consistency: Resolution

$$(p \vee L_0 \vee L_1 \vee ...) \wedge (\neg p \vee M_0 \vee M_1 \vee ...) \models (L_0 \vee L_1 \vee ... \vee M_0 \vee M_1 \vee ...).$$

Clauses: 0) $\neg p_{AB} \vee \neg p_{AC}$ 1) $p_{AB} \vee p_{BC}$ 2) $\neg p_{AB} \vee \neg p_{BC}$ 3) $p_{AC} \vee \neg p_{BC}$ 4) $\neg p_{AC} \vee p_{BC}$

CO2412

4.5.4 Consistency: Resolution

 $(p \vee L_0 \vee L_1 \vee \dots) \wedge (\neg p \vee M_0 \vee M_1 \vee \dots) \models (L_0 \vee L_1 \vee \dots \vee M_0 \vee M_1 \vee \dots).$

0) $\neg p_{AB} \vee \neg p_{AC}$ with 1) $p_{AB} \vee p_{BC}$ 1) $p_{AB} \vee p_{BC}$ with 2) $\neg p_{AB} \vee \neg p_{BC}$ 0) $\neg p_{AB} \vee \neg p_{AC}$ with 3) $p_{AC} \vee \neg p_{BC}$ 1) $p_{AB} \vee p_{BC}$ with 3) $p_{AC} \vee \neg p_{BC}$ 2) $\neg p_{AB} \vee \neg p_{BC}$ with 4) $\neg p_{AC} \vee p_{BC}$ 3) $p_{AC} \vee \neg p_{BC}$ with 4) $\neg p_{AC} \vee p_{BC}$ 0) $\neg p_{AB} \vee \neg p_{AC}$ with 5) $p_{AB} \vee p_{AC}$ 4) $\neg p_{AC} \vee p_{BC}$ with 5) $p_{AB} \vee p_{AC}$ resolves to 4) $\neg p_{AC} \vee p_{BC}$ resolves to $p_{AB} \vee \neg p_{AB}$ and $p_{BC} \vee \neg p_{BC}$ resolves to 2) $\neg p_{AB} \vee \neg p_{BC}$ resolves to 5) $p_{AB} \vee p_{AC}$ resolves to 0) $\neg p_{AB} \vee \neg p_{AC}$ resolves to $p_{AC} \vee \neg p_{AC}$ and $p_{BC} \vee \neg p_{BC}$ resolves to $p_{AB} \vee \neg p_{AB}$ and $p_{AC} \vee \neg p_{AC}$ resolves to 3) $p_{AC} \vee \neg p_{BC}$

Clauses: 0) $\neg p_{AB} \vee \neg p_{AC}$ 1) $p_{AB} \vee p_{BC}$ 2) $\neg p_{AB} \vee \neg p_{BC}$ 3) $p_{AC} \vee \neg p_{BC}$ 4) $\neg p_{AC} \vee p_{BC}$

CO2412

Knowledge graph: Tutorial 4.6 problem

CO2412

- A tree is hierarchical. Every link goes from one node to a subordinate node. There is only one path from the root to any of the nodes in the tree. No link goes back up again. In particular, there are no cycles.
- There is exactly one node, the root node, from which all nodes can be reached. Each node is either a leaf, or it is a root for its own subtree.

Example knowledge graph (see Jupyter notebook knowledge-graph).

What are the indegrees and outdegrees of the nodes? (See below.)

CO2412

What are the indegrees and outdegrees of the nodes? (See below.)

Algorithm for computing the no. of paths with length *m* (consisting of *m* edges):

4.6.2 Spanning trees

Are there any nodes x, y

4.6.3 Knowledge graphs and predicates

University of Central Lancashire

Predicate logic

CO2412

Predicate logic

Statements in propositional logic are constructed from a finite number of atomic statements in combination with the five logical operators for conjunction, disjunction, negation, implication, and equivalence.

To extend this to predicate logic, we replace atomic statements by **predicates** in combination with **variables** (x, y, ...) and **values** that can be used as arguments of the predicates. Predicates are functions with boolean return values.

Example (Erciyes): Define P(x, y, z) by the truth criterion $x + y = z^2$.

P(2, 7, 3)	evaluates to True;	
<i>P</i> (5, 11, 4)	evaluates to True;	$P(5, 11, 4) \rightarrow P(3, 2, evalutes to False.$
P(3, 2, 4)	evaluates to False.	evalutes to raise.

There, *P* is a **ternary predicate** (three arguments).

CO2412

15th March 2022

4)

Unary and binary predicates

Knowledge graphs are best suitable to visualize unary predicates (one argument) and binary predicates (two arguments).

Binary predicates, visualized as edges, represent relations between two objects.

teaches_at(v_3, v_2) $\land \neg$ teaches_at(v_2, v_3)

Unary predicates can represent properties, types, or similar features of single objects.

Module(v_4) \wedge label(v_4 , "CO2412")

Models of predicate logic statements

K satisfies the predicate logic **statements**:

 $S_0 = \text{teaches}_{\text{at}}(v_3, v_2) \wedge \neg \text{teaches}_{\text{at}}(v_2, v_3)$ $S_1 = \text{Module}(v_4) \wedge \text{label}(v_4, \text{"CO2412"})$

We say, "K models S_0 " or "K is a model of S_1 ". Notation: $K \models S_0$ and $K \models S_1$.

The **expression** has_campus_in(*x*, *y*) contains **free variables**: Variables with an unspecified value. Its truth value, even for a given *K*, depends on the values assigned to *x* and *y*. K is a model for (*i.e.*, includes) all the predicates and values on the left, but **not a model** of all that can be said about them, e.g., $K \nvDash$ teaches_at(v_2, v_3).

Binary predicates, visualized as edges, represent relations between two objects. teaches_at(v_3, v_2) \wedge ¬teaches_at(v_2, v_3)

Unary predicates can represent properties, types, or similar features of single objects.

Module(v_4) \wedge label($v_{4'}$ "CO2412")

What predicate logic retains from propositional logic

University of

All observations on propositional logic continue to apply if we replace all the predicate-argument combinations by atomic statements.

Tautologies, contradictions, satisfiability, and falsifiability

 $\models p \mathbf{v} (p \rightarrow q) \qquad \qquad \models (is_greater_than(v, w) \mathbf{v} \\ (is_greater_than(v, w) \rightarrow is_even(w)) \\ 15^{th} March 2022 \qquad \qquad 22$

What predicate logic retains from propositional logic

All observations on propositional logic continue to apply if we replace all the predicate-argument combinations by atomic statements.

Semantic equivalence and entailment

 $p \leftrightarrow \neg q \equiv (p \lor q) \land (\neg p \lor \neg q)$

literals in propositional logic: atomic statements and their negations

$$(\neg p \lor q), (\neg q \lor \neg r) \vDash \neg p \lor \neg r$$

a disjunctive clause literals in predicate logic: predicates and their negations

University of Central Lancashire

$$identical(x, y) \leftrightarrow \neg different(x, y)$$

$$= (identical(x, y) \lor different(x, y)) \land (\neg identical(x, y) \lor \neg different(x, y))$$

$$\neg$$
is_father_of(v, w) V Human(v), a disjunctive
 \neg Human(v) V \neg Robot(v) clause

 $\models \neg is_father_of(v, w) \vee \neg Robot(v)$

Tautologies, contradictions, satisfiability, and falsifiability

 $\models p \lor (p \rightarrow q) \qquad \qquad \models (is_greater_than(v, w) \lor v)$ (is_greater_than(v, w) → is_even(w))
CO2412 15th March 2022 23

Quantifiers and first-order logic

Universal quantifier

The **universal quantifier**, denoted \forall and read as "for all," is applied to a variable that occurs as a free variable in a predicate logic expression.

expression with free variables

 $has_campus_in(x, y) \rightarrow label(x, "UCLan")$

"If x has a campus in y, the label of x is «UCLan»."

The expression cannot be assigned a truth value based on a model; values for the variables would be required.

statement with bound variables

 $\forall x \forall y \text{ (has_campus_in(x, y) } \rightarrow \text{label}(x, "UCLan"))$

"For all possible values of x and y, if x has a campus in y, the label of x is «UCLan»."

K models the statement if the expression is True for all potential values in *K* of the bound variables (all values from the **domain**, *e.g.*, all nodes in the knowledge graph).

In first-order predicate logic (usually just called **first-order logic**), the quantifiers "for all" (\forall , universal quantifier) and "there is" (\exists , existential quantifier) can be applied to variables that occur as arguments of predicates.

Existential quantifier

The **existential quantifier**, denoted **I** and read "there is" or "there exists," is applied to a variable that occurs as a free variable in a predicate logic expression.

expression with free variables

edge(x, y) ∧ label(y, "Larnaca")

"There is an edge from x to y and the label of y is «Larnaca»."

The expression cannot be assigned a truth value based on a model; values for the variables would be required.

statement with bound variables

 $\exists x \exists y (edge(x, y) \land label(y, "Larnaca"))$

"There are (possible values of) x and y such that there is an edge from x to y and the label of y is «Larnaca»."

K models the statement if the expression is True for at least one potential value in K of the bound variables (all values from the **domain**, e.g., all nodes in the knowledge graph).

In first-order predicate logic (usually just called **first-order logic**), the quantifiers "for all" (\forall , universal quantifier) and "there is" (\exists , existential quantifier) can be applied to variables that occur as arguments of predicates.

Square of opposition for quantifiers

Assume a given logical expression F(x) contains a free variable x. The square of opposition visualizes for modes of binding the variable by using quantifiers:

De Morgan's laws for quantifiers

Example 4: a) Transform $\forall x (P(x) \land \exists y Q(x, y)) \rightarrow \neg \forall z P(z)$ into a semantically equivalent statement where only the negation, disjunction, and conjunction operators are used; negations should only occur within literals.

b) Simplify the statement as far as possible.

$$\forall x (P(x) \land \exists y Q(x, y)) \rightarrow \neg \forall z P(z) \equiv \neg \forall x (P(x) \land \exists y Q(x, y)) \lor \neg \forall z P(z)$$

$$\equiv \exists x \neg (P(x) \land \exists y Q(x, y)) \lor \exists z \neg P(z)$$

$$\equiv \exists x (\neg P(x) \lor \neg \exists y Q(x, y)) \lor \exists z \neg P(z)$$

$$\equiv \exists x (\neg P(x) \lor \forall y \neg Q(x, y)) \lor \exists z \neg P(z)$$

De Morgan's laws

∀ <i>x F</i> (<i>x</i>)	≡	$\neg \exists x \neg F(x)$
$\forall x \neg F(x)$	≡	$\neg \exists x F(x)$
$\exists x F(x)$	≡	$\neg \forall x \neg F(x)$
$\exists x \neg F(x)$	≡	$\neg \forall x F(x)$

$$\neg (R \lor S) \equiv \neg R \land \neg S$$

$$\neg (R \land S) \equiv \neg R \lor \neg S$$

CO2412

De Morgan's laws for quantifiers

Example 4: a) Transform $\forall x (P(x) \land \exists y Q(x, y)) \rightarrow \neg \forall z P(z)$ into a semantically equivalent statement where only the negation, disjunction, and conjunction operators are used; negations should only occur within literals.

b) Simplify the statement as far as possible.

$$\forall x (P(x) \land \exists y Q(x, y)) \rightarrow \neg \forall z P(z) \equiv \neg \forall x (P(x) \land \exists y Q(x, y)) \lor \neg \forall z P(z)$$

$$\equiv \exists x \neg (P(x) \land \exists y Q(x, y)) \lor \exists z \neg P(z)$$

$$\equiv \exists x (\neg P(x) \lor \neg \exists y Q(x, y)) \lor \exists z \neg P(z)$$

$$\equiv \exists x (\neg P(x) \lor \forall y \neg Q(x, y)) \lor \exists z \neg P(z)$$

De Morgan's laws

$\forall x F(x)$	≡	$\neg \exists x \neg F(x)$
$\forall x \neg F(x)$	≡	$\neg \exists x F(x)$
$\exists x F(x)$	≡	$\neg \forall x \neg F(x)$
$\exists x \neg F(x)$	≡	$\neg \forall x F(x)$

$$\equiv \exists x (\neg P(x) \lor \forall y \neg Q(x, y)) \lor \exists x \neg P(x)$$

$$\equiv \exists x \neg P(x) \lor \exists x \forall y \neg Q(x, y)$$

CO2412 Computational Thinking

Resolution (tutorial 4.5) Knowledge graph (tutorial 4.6) Predicate logic Quantifiers and first-order logic

Where opportunity creates success