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Python lists

Lists in Python are implemented as dynamic arrays. Their elements behave in 
the same way as Python variables do in general: For elementary data types 
such as numbers, they contain the value.

When a sublist x[i: j] is created from x, all the sublist elements are copied.
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Python lists

Lists in Python are implemented as dynamic arrays. Their elements behave in 
the same way as Python variables do in general: For elementary data types 
such as numbers, they contain the value.

When a sublist x[i: j] is created from x, all the sublist elements are copied.

This takes O(j – i) time and space; in typical cases, that is O(n).
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Python lists

Lists in Python are implemented as dynamic arrays. Their elements behave in 
the same way as Python variables do in general: For elementary data types 
such as numbers, they contain the value, otherwise they are object references.

When a sublist x[i: j] is created from x, all the sublist elements are copied.
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Python lists

Lists in Python are implemented as dynamic arrays. Their elements behave in 
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such as numbers, they contain the value, otherwise they are object references.

When a sublist x[i: j] is created from x, all the sublist elements are copied.



509th November 2021CO2412

def max_iterative(listA):
    current_max_val = listA[0]
    for i in listA:
        if i > current_max_val:
            current_max_val = i
    return current_max_val
(by Chris Pickup)

Tutorial 1.1 problem: Return the maximum

fastest iterative code

def largestRecur(list, n):

    if n == 1:
        return list[n-1]
    else:
        previous = largestRecur(list, n-1)
        current = list[n-1]
        if previous > current:
            return previous
        else:
            return current
(by Sam Hardy)

fastest recursive code
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(by Sam Hardy)

fastest recursive code

Both implementations run in 
O(n) time. The iterative code 
is more efficient by a factor 7.
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Tutorial 1.1 problem: Return the maximum

O(n) recursive codeO(n2) recursive code

def largestRecur(list, n):

    if n == 1:
        return list[n-1]
    else:
        previous = largestRecur(list, n-1)
        current = list[n-1]
        if previous > current:
            return previous
        else:
            return current
(by Sam Hardy)

def largestRecur(list):
    n = len(list)
    if n == 1:
        return list[n-1]
    else:
        previous = largestRecur(list[0: n-1])
        current = list[n-1]
        if previous > current:
            return previous
        else:
            return current

Sublist creation takes O(n) time (and space)!


