
389th November 2021CO2412

Python lists

Lists in Python are implemented as dynamic arrays. Their elements behave in
the same way as Python variables do in general: For elementary data types
such as numbers, they contain the value.

When a sublist x[i: j] is created from x, all the sublist elements are copied.

399th November 2021CO2412

Python lists

Lists in Python are implemented as dynamic arrays. Their elements behave in
the same way as Python variables do in general: For elementary data types
such as numbers, they contain the value.

When a sublist x[i: j] is created from x, all the sublist elements are copied.

This takes O(j – i) time and space; in typical cases, that is O(n).

409th November 2021CO2412

Python lists

Lists in Python are implemented as dynamic arrays. Their elements behave in
the same way as Python variables do in general: For elementary data types
such as numbers, they contain the value, otherwise they are object references.

When a sublist x[i: j] is created from x, all the sublist elements are copied.

419th November 2021CO2412

Python lists

Lists in Python are implemented as dynamic arrays. Their elements behave in
the same way as Python variables do in general: For elementary data types
such as numbers, they contain the value, otherwise they are object references.

When a sublist x[i: j] is created from x, all the sublist elements are copied.

509th November 2021CO2412

def max_iterative(listA):
 current_max_val = listA[0]
 for i in listA:
 if i > current_max_val:
 current_max_val = i
 return current_max_val
(by Chris Pickup)

Tutorial 1.1 problem: Return the maximum

fastest iterative code

def largestRecur(list, n):

 if n == 1:
 return list[n-1]
 else:
 previous = largestRecur(list, n-1)
 current = list[n-1]
 if previous > current:
 return previous
 else:
 return current
(by Sam Hardy)

fastest recursive code

519th November 2021CO2412

def max_iterative(listA):
 current_max_val = listA[0]
 for i in listA:
 if i > current_max_val:
 current_max_val = i
 return current_max_val
(by Chris Pickup)

Tutorial 1.1 problem: Return the maximum

fastest iterative code

def largestRecur(list, n):

 if n == 1:
 return list[n-1]
 else:
 previous = largestRecur(list, n-1)
 current = list[n-1]
 if previous > current:
 return previous
 else:
 return current
(by Sam Hardy)

fastest recursive code

Both implementations run in
O(n) time. The iterative code
is more efficient by a factor 7.

529th November 2021CO2412

Tutorial 1.1 problem: Return the maximum

O(n) recursive codeO(n2) recursive code

def largestRecur(list, n):

 if n == 1:
 return list[n-1]
 else:
 previous = largestRecur(list, n-1)
 current = list[n-1]
 if previous > current:
 return previous
 else:
 return current
(by Sam Hardy)

def largestRecur(list):
 n = len(list)
 if n == 1:
 return list[n-1]
 else:
 previous = largestRecur(list[0: n-1])
 current = list[n-1]
 if previous > current:
 return previous
 else:
 return current

Sublist creation takes O(n) time (and space)!

