
16th November 2021CO2412

Tutorial 1.2 problem

316th November 2021CO2412

Iterative computation of Fibonacci numbers

def fibonacci_iter(n):
 fibo = [0, 1]
 for k in range(2, n+1):
 fibo.append(fibo[k-1] + fibo[k-2])
 return fibo[n]

fibo = [0, 1]

loop

return fibo[n]

416th November 2021CO2412

Iterative computation of Fibonacci numbers

def fibonacci_iter(n):
 fibo = [0, 1]
 for k in range(2, n+1):
 fibo.append(fibo[k-1] + fibo[k-2])
 return fibo[n]

fibo = [0, 1]

for k in range(2, n+1):

fibo.append(fibo[k-1] + fibo[k-2])

return fibo[n]

next

end

516th November 2021CO2412

Iterative computation of Fibonacci numbers

def fibonacci_iter(n):
 fibo = [0, 1]
 for k in range(2, n+1):
 fibo.append(fibo[k-1] + fibo[k-2])
 return fibo[n]

fibo = [0, 1]

for k in range(2, n+1):

fibo.append(fibo[k-1] + fibo[k-2])

return fibo[n]

next

end

initial state S0

S1

S2

S3

S4

final
state S5

What do we want to prove about this code?

… that the nth Fibonacci number is computed
correctly. Our analysis must focus on this.

616th November 2021CO2412

Execution states: First iteration

fibo = [0, 1]

for k in range(2, n+1):

fibo.append(fibo[k-1] + fibo[k-2])

return fibo[n]

next

end

initial state S0

S1

S2

S3

S4

final
state S5

What do we want to prove about this code?

… that the nth Fibonacci number is computed
correctly. Our analysis must focus on this.

S0: n is a natural number or 0.

S1: as above; also, fibo is [0, 1]; that is,
 fibo[0] and fibo[1] contain F0 and F1

S2: k ≡ 2 and n ≥ 2;
 fibo contains F0 and F1

716th November 2021CO2412

Execution states: First iteration

fibo = [0, 1]

for k in range(2, n+1):

fibo.append(fibo[k-1] + fibo[k-2])

return fibo[n]

next

end

initial state S0

S1

S2

S3

S4

final
state S5

S0: n is a natural number or 0.

S1: as above; also, fibo is [0, 1]; that is,
 fibo[0] and fibo[1] contain F0 and F1

S2: k ≡ 2 and n ≥ 2;
 fibo contains F0 and F1

S3: k ≡ 2 and n ≥ 2;
 fibo contains F0, F1, and F2

816th November 2021CO2412

Execution states: Loop invariants

fibo = [0, 1]

for k in range(2, n+1):

fibo.append(fibo[k-1] + fibo[k-2])

return fibo[n]

next

end

initial state S0

S1

S2

S3

S4

final
state S5

S0: n is a natural number or 0.

S1: as above; also, fibo is [0, 1]; that is,
 fibo[0] and fibo[1] contain F0 and F1

S2: 2 ≤ k ≤ n;
 fibo contains F0 , F1, …, Fk –1

S3: 2 ≤ k ≤ n;
 fibo contains F0 , F1, …, Fk –1, Fk

Is it true the first time? Yes.

If true in one iteration, is it true in the next one? Yes.

916th November 2021CO2412

Execution states and proof of correctness

fibo = [0, 1]

for k in range(2, n+1):

fibo.append(fibo[k-1] + fibo[k-2])

return fibo[n]

next

end

initial state S0

S1

S2

S3

S4

final
state S5

S0: n is a natural number or 0.

S1: as above; also, fibo is [0, 1]; that is,
 fibo[0] and fibo[1] contain F0 and F1

S2: 2 ≤ k ≤ n;
 fibo contains F0 , F1, …, Fk –1

S3: 2 ≤ k ≤ n;
 fibo contains F0 , F1, …, Fk –1, Fk

S4: fibo contains F0, …, Fm where m is max(n, 1);
 in particular, fibo[n] is the n’th Fibonacci no.

S5: the n’th Fibonacci no. was returned

1016th November 2021CO2412

Fibonacci code: Space efficiency

fibo = [0, 1]

for k in range(2, n+1):

fibo.append(fibo[k-1] + fibo[k-2])

return fibo[n]

next

end

initial state S0

S1

S2

S3

S4

final
state S5

S4: fibo contains F0, …, Fm where m is max(n, 1);
 in particular, fibo[n] is the n’th Fibonacci no.

def fibonacci_iter(n):
 fibo = [0, 1]
 for k in range(2, n+1):
 fibo.append(fibo[k-1] \
 + fibo[k-2])
 return fibo[n]

List size: O(n)

1116th November 2021CO2412

Fibonacci code: Memory optimization

S4: fibo contains F0, …, Fm where m is max(n, 1);
 in particular, fibo[n] is the n’th Fibonacci no.

def fibonacci_iter(n):
 fibo = [0, 1]
 for k in range(2, n+1):
 fibo.append(fibo[k-1] \
 + fibo[k-2])
 return fibo[n]

List size: O(n)

def fibonacci_iter(n):
 if n == 0:
 return 0
 F_k_minus_one, F_k = 0, 1 # k = 1
 for k in range(2, n+1):
 F_k_minus_two = F_k_minus_one
 F_k_minus_one = F_k
 F_k = F_k_minus_one \
 + F_k_minus_two
 return F_k # k = n

1216th November 2021CO2412

Fibonacci code: Memory optimization

S4: fibo contains F0, …, Fm where m is max(n, 1);
 in particular, fibo[n] is the n’th Fibonacci no.

def fibonacci_iter(n):
 fibo = [0, 1]
 for k in range(2, n+1):
 fibo.append(fibo[k-1] \
 + fibo[k-2])
 return fibo[n]

List size: O(n)

def fibonacci_iter(n):
 if n == 0:
 return 0
 F_k_minus_one, F_k = 0, 1 # k = 1
 for k in range(2, n+1):
 F_k_minus_two = F_k_minus_one
 F_k_minus_one = F_k
 F_k = F_k_minus_one \
 + F_k_minus_two
 return F_k # k = n

O(n) space code O(1) space code

constant number of
elementary variables

O(1) space

