Tutorial 1.2 problem

Iterative computation of Fibonacci numbers

```
def fibonacci_iter(n):
    fibo = [0, 1]
    for k in range(2, n+1):
        fibo.append(fibo[k-1] + fibo[k-2])
    return fibo[n]
```


Iterative computation of Fibonacci numbers

def fibonacci_iter(n):
fibo $=[0,1]$
for k in range $(2, n+1)$:
fibo.append(fibo[k-1] + fibo[k-2]) return fibo[n]

Iterative computation of Fibonacci numbers

Execution states: First iteration

$S_{0}: n$ is a natural number or 0 .
S_{1} : as above; also, fibo is $[0,1]$; that is, fibo[0] and fibo[1] contain F_{0} and F_{1}
$S_{2}: k \equiv 2$ and $n \geq 2$;
filo contains F_{0} and F_{1}

What do we want to prove about this code?
... that the nth Fibonacci number is computed correctly. Our analysis must focus on this.

Execution states: First iteration

Execution states: Loop invariants

$S_{0}: n$ is a natural number or 0 .
S_{1} : as above; also, fibo is $[0,1]$; that is, fibo[0] and fibo[1] contain F_{0} and F_{1}
$S_{2}: 2 \leq k \leq n ;$
fibo contains $F_{0}, F_{1}, \ldots, F_{k-1}$

Execution states and proof of correctness

$S_{0}: n$ is a natural number or 0 .
S_{1} : as above; also, fibo is $[0,1]$; that is, fibo[0] and fibo[1] contain F_{0} and F_{1}
$S_{2}: 2 \leq k \leq n ;$
fibo contains $F_{0}, F_{1}, \ldots, F_{k-1}$

Fibonacci code: Space efficiency

Fibonacci code: Memory optimization

def fibonacci_iter(n):
fibo $=[0,1]$
for k in range $(2, n+1)$:
fibo.append(fibo[k-1]\}

+ fibo[k-2])
return fibo[n]

List size: $\mathrm{O}(n)$

def fibonacci_iter(n):
if $\mathrm{n}==0$: return 0
F_k_minus_one, F_k = 0, 1 \# k = 1
for k in range $(2, n+1)$:
F_k_minus_two = F_k_minus_one
F_k_minus_one $=$ F_k
F_k = F_k_minus_one \}

+ F_k_minus_two
return F _k \#k $=n$
S_{4} : fibo contains $F_{0^{\prime}}, \ldots, F_{\mathrm{m}}$ where m is $\max (\mathrm{n}, 1)$; in particular, fibo[n] is the n 'th Fibonacci no.

Fibonacci code: Memory optimization

$O(n)$ space code
def fibonacci_iter(n):
fibo $=[0,1]$
for k in range $(2, n+1)$:
fibo.append(fibo[k-1]\}

+ fibo[k-2])
return fibo[n]

List size: O(n)

S_{4} : fibo contains $F_{0^{\prime}}, \ldots, F_{\mathrm{m}}$ where m is $\max (\mathrm{n}, 1)$; in particular, fibo[n] is the n 'th Fibonacci no.

O(1) space code
def fibonacci_iter(n):
if $\mathrm{n}==0$:
return 0
F_k_minus_one, F_k = 0, 1 \# k = 1
for k in range $(2, n+1)$:
F_k_minus_two = F_k_minus_one
F_k_minus_one $=$ F_k
F_k = F_k_minus_one \}

+ F_k_minus_two
return F_k \#k = n
constant number of elementary variables

O(1) space

