
117th December 2021CO2412

Number matching (T1.3.2)

def natmatch(x, y):
 for i in range(len(x)):
 for j in range(i+1, len(x)):
 if (x[i]+x[j] == y) and (x[i] != x[j]):
 return [x[i], x[j]]
 return []

for i in range(len(x)):

for j in range(i+1, len(x)):

if (x[i]+x[j] == y) and (x[i] != x[j]):

return [x[i], x[j]]

return []

end

next
S4

final state S3

end

S2

next
S1

S5

true
S6

false

S8

Specification

The function takes a list x
and a natural number y
as arguments. If in the
list x, there are elements
a and b which are not
equal and add up to y,
the list [a, b] is returned;
otherwise, [] is returned. final state S7

127th December 2021CO2412

Number matching (T1.3.2)

def natmatch(x, y):

 for i in range(len(x)):

 for j in range(i+1, len(x)):

 if (x[i]+x[j] == y) and (x[i] != x[j]):

 return [x[i], x[j]]

 return []

Note: Input size n given by len(x)

loop executed O(n) times:

– loop executed O(n) times:

• O(1) instructions

• O(1) optional instructions

O(1) optional instructions

O(n) · O(n·1) + O(1) = O(n2) instructions

O(n2) time efficiency

137th December 2021CO2412

Number matching (T1.3.2)

Improved algorithm implemented by Harry Rowan:

def natmatch(x, y):
 mydict = {}
 for i in range(len(x)):
 c = y - x[i]
 if c in mydict:
 return [c, x[i]]
 mydict[x[i]] = i
 return []

Python dictionaries and sets could be
used to this effect equivalently.

Example, x = [6, 4, 5, 3, 9], y = 11:

6 → 11 – 6 = 5 not found in storage
insert 6 into storage

4 → 11 – 4 = 7 not found in storage
insert 4 into storage

5 → 11 – 5 = 6 found in storage
return [6, 5]

147th December 2021CO2412

Number matching (T1.3.2)

Improved algorithm implemented by Harry Rowan:

def natmatch(x, y):
 mydict = {}
 for i in range(len(x)):
 c = y - x[i]
 if c in mydict:
 return [c, x[i]]
 mydict[x[i]] = i
 return []

Fig. from Wikipedia, “Hash table”

Python dictionaries and sets are implemen-
ted as dynamically resized hash tables:

157th December 2021CO2412

Number matching (T1.3.2)

Improved algorithm implemented by Harry Rowan; worst case still O(n2):

def natmatch(x, y):
 mydict = {}
 for i in range(len(x)):
 c = y - x[i]
 if c in mydict:
 return [c, x[i]]
 mydict[x[i]] = i
 return []

Python dictionaries and sets are implemen-
ted as dynamically resized hash tables:

hash
function

Fig. from Wikipedia, “Hash table”

In the worst case, this data struc-
ture has O(n) time for search
and insertion. For the average
case, it is highly efficient.

167th December 2021CO2412

Number matching (T1.3.2)

Improved algorithm implemented by Harry Rowan:

def natmatch(x, y):
 initialize empty storage
 for i in range(len(x)):
 c = y - x[i]
 if storage.contains(c):
 return [c, x[i]]
 storage.insert(x[i])
 return []

What is the time efficiency? How does it
depend on the employed data structure?

Example, x = [6, 4, 5, 3, 9], y = 11:

6 → 11 – 6 = 5 not found in storage
insert 6 into storage

4 → 11 – 4 = 7 not found in storage
insert 4 into storage

5 → 11 – 5 = 6 found in storage
return [6, 5]

O(n) loop operations.

Each with one search operation
and one insertion operation.

177th December 2021CO2412

Number matching (T1.3.2)

Improved algorithm implemented by Harry Rowan:

def natmatch(x, y):
 initialize empty storage
 for i in range(len(x)):
 c = y - x[i]
 if storage.contains(c):
 return [c, x[i]]
 storage.insert(x[i])
 return []

What is the time efficiency? How does it
depend on the employed data structure?

How about:
– Unsorted linked list or dyn. array?

– A sorted dynamic array?

– A sorted linked list or an
unbalanced search tree?

– A balanced search tree?

– Python sets or dicts?

O(n) loop operations.

Each with one search operation
and one insertion operation.

187th December 2021CO2412

Number matching (T1.3.2)

Improved algorithm implemented by Harry Rowan:

def natmatch(x, y):
 initialize empty storage
 for i in range(len(x)):
 c = y - x[i]
 if storage.contains(c):
 return [c, x[i]]
 storage.insert(x[i])
 return []

What is the time efficiency? How does it
depend on the employed data structure?

How about:
– Unsorted linked list or dyn. array?

s done in O(n), i done in O(1).
– A sorted dynamic array?

s done in O(log n), i done in O(n).
– A sorted linked list or an

unbalanced search tree?
s done in O(n), i done in O(n).

– A balanced search tree?
s and i both done in O(log n).

– Python sets or dicts?
Worst case O(n) for both s and i.

O(n) loop operations.

Each with one search (s) operation
and one insertion (i) operation.

197th December 2021CO2412

Number matching (T1.3.2)

Improved algorithm implemented by Harry Rowan:

def natmatch(x, y):
 initialize empty storage
 for i in range(len(x)):
 c = y - x[i]
 if storage.contains(c):
 return [c, x[i]]
 storage.insert(x[i])
 return []

O(n) loop operations.
– O(log n) time per iteration.

O(n log n) with a balanced tree.

What is the time efficiency? How does it
depend on the employed data structure?

How about:
– Unsorted linked list or dyn. array?

s done in O(n), i done in O(1).
– A sorted dynamic array?

s done in O(log n), i done in O(n).
– A sorted linked list or an

unbalanced search tree?
s done in O(n), i done in O(n).

– A balanced search tree?
s and i both done in O(log n).

– Python sets or dicts?
Worst case O(n) for both s and i.

