Cashier problem (T2.2)

The cashier problem is specified as follows. The function solving the problem has two arguments:

1) first, a natural number, given in the smallest currency unit (e.g., pence), representing an amount of money that is to be paid out;
2) second, a sorted list with the values of the existing coin types, in the same currency unit (we assume that " 1 " is always among these values).

As the function's return value, we expect a list containing coin values that add up to the requested amount; this must be the shortest possible list, i.e., we want to use as few coins as possible.

Note that as a precondition it is assumed that the list passed as the function's second argument is already sorted.

Cashier problem (T2.2)

greedy algorithm
def cashier(amount, coin_types):
coins = []
remainder $=$ amount
while remainder >= coin_types[0]:
for i in range(len(coin_types)-1, $-1,-1$):
if remainder >= coin_types[i]:
coins.append(coin_types[i]) remainder -= coin_types[i] break
return coins

Cashier problem (T2.2)

Condition for the greedy algorithm: The shortest sum containing coin x never consists of more coins than the shortest equivalent sum containing only coins $<x$.
def cashier(amount, coin_types):
coins = []
remainder = amount
while remainder $>=$ coin_types[0]:
for i in range(len(coin_types)-1, $-1,-1$):
if remainder >= coin_types[i]: coins.append(coin_types[i]) remainder -= coin_types[i] break
return coins

Cashier problem (T2.2)

greedy algorithm
Let $n=$ amount and $k=$ len(coin_types).
def cashier(amount, coin_types):
coins = []
remainder $=$ amount
while remainder >= coin_types[0]:
for i in range(len(coin_types)-1, $-1,-1$): \quad Upper bound: $O(k)$ iterations if remainder >= coin_types[i]: coins.append(coin_types[i]) remainder -= coin_types[i] break
return coins

Upper bound: $O(n)$ iterations
O(1) instructions

- O(1) time on average, for a well-managed dyn. array. O(1) time worst case if we were using a linked list.

Cashier problem (T2.2)

greedy algorithm
Let $n=$ amount and $k=$ len(coin_types).
def cashier(amount, coin_types):
coins = []
remainder $=$ amount
while remainder >= coin_types[0]: Upper bound: $O(n)$ iterations
for i in range(len(coin_types)-1, $-1,-1$): - Upper bound: $O(k)$ iterations
if remainder >= coin_types[i]:
coins.append(coin_types[i]) remainder -= coin_types[i] break
return coins
$O(1)$ instructions

- O(1) time* per iteration [*rigorous with a linked list]

Cashier problem (T2.2)

Illustration: Dynamic programming algorithm for the cashier problem

$$
\begin{gathered}
\text { amount }=12, \\
\text { coin_types }=[1,4,9,16]
\end{gathered}
$$

If we return a 9 -valued coin, the remainder reduces to 3 .
If we return a 4 -valued coin, the remainder reduces to 8 .
If we return a 1 -valued coin, the remainder reduces to 11 .

Cashier problem (T2.2)

Illustration: Dynamic programming algorithm for the cashier problem

A remainder of 12 currency units can be reached using zero coins.
A remainder of 3,8 , or 11 can be reached using one coin.
A remainder of $2,4,7$, or 10 can be reached using two coins.

Cashier problem (T2.2)

Illustration: Dynamic programming algorithm for the cashier problem

Cashier problem (T2.2)

Overlapping subproblems, e.g., equivalence of $[9,1,1],[1,9,1]$, and $[1,1,9]$

Cashier problem (T2.2)

Illustration: Dynamic programming algorithm for the cashier problem

