
207th December 2021CO2412

Cashier problem (T2.2)

The cashier problem is specified as follows. The function solving the problem
has two arguments:

1) first, a natural number, given in the smallest currency unit (e.g., pence),
representing an amount of money that is to be paid out;

2) second, a sorted list with the values of the existing coin types, in the
same currency unit (we assume that “1” is always among these values).

As the function’s return value, we expect a list containing coin values that add
up to the requested amount; this must be the shortest possible list, i.e., we
want to use as few coins as possible.

Note that as a precondition it is assumed that the list passed as the function's
second argument is already sorted.

217th December 2021CO2412

Cashier problem (T2.2)

greedy algorithm

def cashier(amount, coin_types):
 coins = []
 remainder = amount

 while remainder >= coin_types[0]:

 for i in range(len(coin_types)-1, -1, -1):
 if remainder >= coin_types[i]:
 coins.append(coin_types[i])
 remainder -= coin_types[i]
 break
 return coins

amount = 12,
coin_types = [1, 2, 5, 10]

remainder = 12,
coins = []

remainder = 2,
coins = [10]

remainder = 0,
coins = [10, 2]

return [10, 2]

227th December 2021CO2412

Cashier problem (T2.2)

Condition for the greedy algorithm:
The shortest sum containing coin x never
consists of more coins than the shortest
equivalent sum containing only coins < x.

def cashier(amount, coin_types):
 coins = []
 remainder = amount
 while remainder >= coin_types[0]:
 for i in range(len(coin_types)-1, -1, -1):
 if remainder >= coin_types[i]:
 coins.append(coin_types[i])
 remainder -= coin_types[i]
 break
 return coins

amount = 12,
coin_types = [1, 4, 9, 16]

remainder = 12,
coins = []

remainder = 3,
coins = [9]

remainder = 2,
coins = [9, 1]

remainder = 1,
coins = [9, 1, 1]

remainder = 0,
coins = [9, 1, 1, 1]

return [9, 1, 1, 1]
compare
[4, 4, 4]

237th December 2021CO2412

Cashier problem (T2.2)

def cashier(amount, coin_types):
 coins = []
 remainder = amount

 while remainder >= coin_types[0]:

 for i in range(len(coin_types)-1, -1, -1):
 if remainder >= coin_types[i]:
 coins.append(coin_types[i])
 remainder -= coin_types[i]
 break
 return coins

greedy algorithm Let n = amount and k = len(coin_types).

O(1) instructions

Upper bound: O(n) iterations

– Upper bound: O(k) iterations

• O(1) time on average, for
a well-managed dyn. array.
O(1) time worst case if we
were using a linked list.

247th December 2021CO2412

Cashier problem (T2.2)

def cashier(amount, coin_types):
 coins = []
 remainder = amount

 while remainder >= coin_types[0]:

 for i in range(len(coin_types)-1, -1, -1):
 if remainder >= coin_types[i]:
 coins.append(coin_types[i])
 remainder -= coin_types[i]
 break
 return coins

greedy algorithm Let n = amount and k = len(coin_types).

O(1) instructions

Upper bound: O(n) iterations

– Upper bound: O(k) iterations

• O(1) time* per iteration
[*rigorous with a linked list]

O(kn) time efficiency

that is O(n) if k is treated as constant

257th December 2021CO2412

Cashier problem (T2.2)

Illustration: Dynamic programming algorithm for the cashier problem

amount = 12,
coin_types = [1, 4, 9, 16]12

1183

1
4

9

[1][4][9]

[]
16

1

If we return a 9-valued coin, the remainder reduces to 3.
If we return a 4-valued coin, the remainder reduces to 8.
If we return a 1-valued coin, the remainder reduces to 11.

267th December 2021CO2412

Cashier problem (T2.2)

Illustration: Dynamic programming algorithm for the cashier problem

amount = 12,
coin_types = [1, 4, 9, 16]12

1183

1
4

9

[1][4][9]

[]
16

2 4 7 10

1

[9, 1]

4, 9, 16

[1, 1]

1

4

9, 16

[4, 4]

9

4 1

1

4[9, 1] [4, 1]
two coins
required

one coin
required

A remainder of 12 currency units can be reached using zero coins.
A remainder of 3, 8, or 11 can be reached using one coin.
A remainder of 2, 4, 7, or 10 can be reached using two coins.

16

277th December 2021CO2412

Cashier problem (T2.2)

Illustration: Dynamic programming algorithm for the cashier problem

amount = 12,
coin_types = [1, 4, 9, 16]12

1183

1
4

9

[1][4][9]

[]
16

2 4 7 10

1

[9, 1]

4, 9, 16

[1, 1]

1

4

9, 16

[4, 4]

9

4 1

1

1 0 6 9[9, 1, 1] [1, 1, 1][4, 4, 4]

4[9, 1] [4, 1]

4, 9, 16
1

1

4

9, 16

4

1

[4, 1, 1]

9, 16

9

4 1

three coins
required

two coins
required

one coin
required16

16

287th December 2021CO2412

Cashier problem (T2.2)

Overlapping subproblems, e.g., equivalence of [9, 1, 1], [1, 9, 1], and [1, 1, 9]

amount = 12,
coin_types = [1, 4, 9, 16]12

1183

1
4

9

[1][4][9]

[]
16

2 4 7 10

1

[9, 1]

4, 9, 16

[1, 1]

1

4

9, 16

[4, 4]

9

4 1

1

1 0 6 9[9, 1, 1] [1, 1, 1][4, 4, 4]

4[9, 1] [4, 1]

4, 9, 16
1

1

4

9, 16

4

1

[4, 1, 1]

9, 16

9

4 1

three coins
required

two coins
required

one coin
required16

16

297th December 2021CO2412

Cashier problem (T2.2)

Illustration: Dynamic programming algorithm for the cashier problem

12

1183

1
4

9

2 4 7 10

1
1

4
1

1

1 0 6 9

4

1 4
1

1

This reduces to
computing a BFS
spanning tree,

over a graph with at
most n+1 nodes,

with node out-degree
upper bound of k.

Time efficiency O(kn),
same as for the
greedy algorithm.

