
8th March 2022CO2412

Travelling salesman:
Tutorial 3.5 problem

38th March 2022CO2412

Adjacency matrix data structure

Matrix-like data structures in Python include lists of lists (i.e., 2D dynamic
arrays), if the numpy library is used, two-dimensional static arrays. For graphs,
the most relevant data structure of this type is the adjacency matrix.

0

1

2

3

4

self._adj_matrix = [[0, 1, 1, 0, 0],

[0, 0, 0, 1, 0],

[1, 1, 0, 0, 0],

[0, 1, 1, 0, 0],

[1, 0, 1, 0, 0]]

edge from 2 to 1

no edge
from 3 to 4

self._adj_matrix[2][1] = 1, or True

self._adj_matrix[3][4] = 0, or False

For a sparse graph, the majority of
entries in the 2D array/matrix is zero.
Adjacency matrices are commonly
used when expecting a dense graph.

48th March 2022CO2412

Adjacency matrix data structure

For a graph with labelled edges, the adjacency matrix contains edge labels.
In the case of a weighted graph, the labels represent the length of the edges.
If these edges are travel distances, the diagonal entries should be zero.

0

1

2

3

4

no edge
from 3 to 4

self._adj_matrix[1][1] = 0

self._adj_matrix[2][1] = 1

self._adj_matrix[3][4] = ∞

For a sparse graph, the majority of
entries in the 2D array/matrix is infinity.
Adjacency matrices are commonly
used when expecting a dense graph.

4

5

2
3

9
8

2

5

self._adj_matrix = [[0, 2, 8, ∞, ∞],

[∞, 0, ∞, ∞, ∞],

[9, 4, 0, ∞, ∞],

[∞, 2, 5, 0, ∞],

[5, ∞, 3, ∞, 0]]

58th March 2022CO2412

Adjacency matrix data structure

For a graph with labelled edges, the adjacency matrix contains edge labels.
Task 3.5.1c: Adaptation to the assessment problem.

For a sparse graph, the majority of
entries in the 2D array/matrix is None.
Adjacency matrices are commonly
used when expecting a dense graph.

has campus in

Preston

Larnaca

UCLan

Ollie Martin

has campus in

teaches at

teaches at

lives inlives in

0

1

2

3 4

self._adj_matrix = [

[None, None, None, None, None],

[None, None, None, None, None],

["has campus in", "has campus in", None, None,None],

["lives in", None, "teaches at", None, None],

["lives in", None, "teaches at", None, None]

]
self._node_labels = [

"Preston",
"Larnaca",
"UCLan",
"Ollie",
"Martin"

]

68th March 2022CO2412

Task 3.5.1b: Implement calculation of the length of a path.

Adjacency matrix data structure

 # returns weight of the edge between i and j
 #
 def get_weight(self, i, j):
 return self._adj_matrix[i][j]

 # the path is a list of node IDs
 #
 def get_length_of_path(self, path):
 length = 0
 for i in range(len(path) - 1):
 length += self.get_weight(path[i], path[i+1])
 return length

Path given by a list of traversed
nodes. The length of the path is:

_adj_matrix[path[0]][path[1]]
+ _adj_matrix[path[1]][path[2]]
+ _adj_matrix[path[2]][path[3]]

…

+ _adj_matrix[path[len(path) - 2]]
][path[len(path) - 1]]

78th March 2022CO2412

Travelling salesman problem (TSP)

Task 3.5.2a: No. of Hamilton cycles

A travelling salesman needs to visit
all the cities, by a path that ends at
the same city where it starts (a cycle).

No city may be visited twice. Every
city must be visited exactly once.
(Except for returning to the start.)
These cycles are Hamilton cycles.

Assume that the initial/final node is
fixed; let it be the node no. 0.

How many cycles covering all nodes
are there in a complete graph with n
nodes, that is a graph where every
node is adjacent to every other node?

Example:
n = 6

start and
end point

No. of Hamilton cycles in a complete graph: (n – 1) · (n – 2) · … · 2 · 1 = (n – 1)!

n = 12 nodes: 11! = 39.9 million cycles; n = 15 nodes: 14! = 87.2 billion cycles.

88th March 2022CO2412

TSP: Randomized approximation algorithm

random
samples

complete
exploration

see tsp-discussion notebook

