

Travelling salesman: Tutorial 3.5 problem

CO2412

8th March 2022

Matrix-like data structures in Python include lists of lists (*i.e.*, 2D dynamic arrays), if the numpy library is used, two-dimensional static arrays. For graphs, the most relevant data structure of this type is the **adjacency matrix**.

self._adj_matrix = [[0, 1, 1, 0, 0], [0, 0, 0, 1, 0], [1, $\underline{1}$, 0, 0, 0], [0, 1, 1, 0, 0], [1, 0, 1, 0, 0]],

For a sparse graph, the majority of entries in the 2D array/matrix is zero. Adjacency matrices are commonly used when expecting a **dense graph**.

self._adj_matrix[2][1] = 1, or True

self._adj_matrix[3][4] = 0, or False

CO2412

For a graph with labelled edges, the adjacency matrix contains edge labels. In the case of a weighted graph, the labels represent the length of the edges. If these edges are travel distances, the diagonal entries should be zero.

For a sparse graph, the majority of entries in the 2D array/matrix is infinity. Adjacency matrices are commonly used when expecting a **dense graph**.

self._adj_matrix = [[0, 2, 8,
$$\infty$$
, ∞],
[∞ , $\underline{0}$, ∞ , ∞ , ∞],
[9, $\underline{4}$, 0, ∞ , ∞],
[∞ , 2, 5, 0, $\underline{\infty}$],
[5, ∞ , 3, ∞ , 0]

self._adj_matrix[1][1] = 0
self._adj_matrix[2][1] = 1

self._adj_matrix[3][4] = ∞

CO2412

For a graph with labelled edges, the adjacency matrix contains edge labels. **Task 3.5.1c: Adaptation to the assessment problem.**

For a sparse graph, the majority of entries in the 2D array/matrix is None. Adjacency matrices are commonly used when expecting a dense graph.

self._adj_matrix = [

[None,	None,	None,	None,	None],
[None,	None,	None,	None,	None],
["has campus in", "has campus in", None, None, None],				
["lives in",	None,	"teaches at",	None,	None],
["lives in",	None,	"teaches at",	None,	None]

CO2412

Task 3.5.1b: Implement calculation of the length of a path.

```
# returns weight of the edge between i and j
#
def get_weight(self, i, j):
```

```
return self._adj_matrix[i][j]
```

```
# the path is a list of node IDs
#
```

```
def get_length_of_path(self, path):
```

length = 0

```
for i in range(len(path) - 1):
```

```
length += self.get_weight(path[i], path[i+1])
return length
```

Path given by a list of traversed nodes. The length of the path is:

_adj_matrix[path[0]][path[1]] + _adj_matrix[path[1]][path[2]] + _adj_matrix[path[2]][path[3]]

• • •

```
+ _adj_matrix[ path[len(path) - 2] ]
][ path[len(path) - 1] ]
```


Travelling salesman problem (TSP)

How many cycles covering all nodes are there in a **complete graph** with *n* nodes, that is a graph where every node is adjacent to every other node?

Task 3.5.2a: No. of Hamilton cycles

A travelling salesman needs to visit all the cities, by a path that ends at the same city where it starts (a **cycle**).

No city may be visited twice. Every city must be visited exactly once. (Except for returning to the start.) These cycles are **Hamilton cycles**.

Assume that the initial/final node is fixed; let it be the node no. 0.

No. of Hamilton cycles in a complete graph: $(n - 1) \cdot (n - 2) \cdot ... \cdot 2 \cdot 1 = (n - 1)!$

n = 12 nodes: 11! = 39.9 million cycles; n = 15 nodes: 14! = 87.2 billion cycles.

8th March 2022

TSP: Randomized approximation algorithm

