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Travelling salesman:
Tutorial 3.5 problem
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Adjacency matrix data structure

Matrix-like data structures in Python include lists of lists (i.e., 2D dynamic 
arrays), if the numpy library is used, two-dimensional static arrays. For graphs, 
the most relevant data structure of this type is the adjacency matrix.
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self._adj_matrix = [ [0, 1, 1, 0, 0],

[0, 0, 0, 1, 0],

[1, 1, 0, 0, 0],

[0, 1, 1, 0, 0],

[1, 0, 1, 0, 0] ]

edge from 2 to 1

no edge 
from 3 to 4

self._adj_matrix[2][1] = 1, or True

self._adj_matrix[3][4] = 0, or False

For a sparse graph, the majority of 
entries in the 2D array/matrix is zero. 
Adjacency matrices are commonly 
used when expecting a dense graph.
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Adjacency matrix data structure

For a graph with labelled edges, the adjacency matrix contains edge labels.
In the case of a weighted graph, the labels represent the length of the edges.
If these edges are travel distances, the diagonal entries should be zero.
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no edge 
from 3 to 4

self._adj_matrix[1][1] = 0

self._adj_matrix[2][1] = 1

self._adj_matrix[3][4] = ∞

For a sparse graph, the majority of 
entries in the 2D array/matrix is infinity. 
Adjacency matrices are commonly 
used when expecting a dense graph.
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self._adj_matrix = [ [0, 2, 8, ∞, ∞],

[∞, 0, ∞, ∞, ∞],

[9, 4, 0, ∞, ∞],

[∞, 2, 5, 0, ∞],

[5, ∞, 3, ∞, 0] ]
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Adjacency matrix data structure

For a graph with labelled edges, the adjacency matrix contains edge labels.
Task 3.5.1c: Adaptation to the assessment problem.

For a sparse graph, the majority of 
entries in the 2D array/matrix is None. 
Adjacency matrices are commonly 
used when expecting a dense graph.
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Larnaca
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Ollie Martin
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self._adj_matrix = [

[None, None, None, None, None],

[None, None, None, None, None],

["has campus in", "has campus in", None, None,None],

["lives in", None,     "teaches at", None, None],

["lives in", None,     "teaches at", None, None]

]
self._node_labels = [

"Preston",
"Larnaca",
"UCLan",
"Ollie",
"Martin"

]
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Task 3.5.1b: Implement calculation of the length of a path.

Adjacency matrix data structure

    # returns weight of the edge between i and j
    #
    def get_weight(self, i, j):
        return self._adj_matrix[i][j]
    
    # the path is a list of node IDs
    #
    def get_length_of_path(self, path):
        length = 0
        for i in range(len(path) - 1):
            length += self.get_weight(path[i], path[i+1])
        return length

Path given by a list of traversed 
nodes. The length of the path is:

_adj_matrix[ path[0] ][ path[1] ]
+ _adj_matrix[ path[1] ][ path[2] ]
+ _adj_matrix[ path[2] ][ path[3] ]

…

+ _adj_matrix[ path[len(path) - 2] ]
][ path[len(path) - 1] ]
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Travelling salesman problem (TSP)

Task 3.5.2a: No. of Hamilton cycles

A travelling salesman needs to visit 
all the cities, by a path that ends at 
the same city where it starts (a cycle).

No city may be visited twice. Every 
city must be visited exactly once. 
(Except for returning to the start.) 
These cycles are Hamilton cycles.

Assume that the initial/final node is 
fixed; let it be the node no. 0.

How many cycles covering all nodes 
are there in a complete graph with n 
nodes, that is a graph where every 
node is adjacent to every other node?

Example:
n = 6

start and 
end point

No. of Hamilton cycles in a complete graph: (n – 1) · (n – 2) · … · 2 · 1  =  (n – 1)!

n = 12 nodes: 11! = 39.9 million cycles; n = 15 nodes: 14! = 87.2 billion cycles.
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TSP: Randomized approximation algorithm

random 
samples

complete 
exploration

see tsp-discussion notebook


