Travelling salesman: Tutorial 3.5 problem

Adjacency matrix data structure

Matrix-like data structures in Python include lists of lists (i.e., 2D dynamic arrays), if the numpy library is used, two-dimensional static arrays. For graphs, the most relevant data structure of this type is the adjacency matrix.

$$
\text { self._adj_matrix }=\left[\begin{array}{ll}
{[0,1,} & 1,0,0],
\end{array}\right.
$$

$[0,0,0,1,0]$,
$[1, ~ 1, ~ 0, ~ 0, ~ 0]$,
$[0,1,1,0,0]$,
$[1,0,1,0,0] \quad$]
For a sparse graph, the majority of entries in the 2D array/matrix is zero.
self._adj_matrix[2][1] = 1, or True Adjacency matrices are commonly used when expecting a dense graph.
self._adj_matrix[3][4] = 0, or False

Adjacency matrix data structure

For a graph with labelled edges, the adjacency matrix contains edge labels. In the case of a weighted graph, the labels represent the length of the edges. If these edges are travel distances, the diagonal entries should be zero.

For a sparse graph, the majority of entries in the 2D array/matrix is infinity.
Adjacency matrices are commonly used when expecting a dense graph.

$$
\text { self._adj_matrix[1][1] = } 0
$$

$$
\text { self._adj_matrix[2][1] = } 1
$$

$$
\text { self._adj_matrix[3][4] = } \infty
$$

$$
\begin{aligned}
& \text { self._adj_matrix }=\left[\begin{array}{lll}
{[0,2,} & 8, \infty \\
\infty
\end{array}\right] \text {, } \\
& {[\infty, \underline{0}, \infty, \infty, \infty] \text {, }} \\
& {[9,4,0, \infty, \infty] \text {, }} \\
& {[\infty, 2,5,0, \infty] \text {, }} \\
& {[5, \infty, 3, \infty, 0] \text {] }}
\end{aligned}
$$

Adjacency matrix data structure

For a graph with labelled edges, the adjacency matrix contains edge labels.
Task 3.5.1 c : Adaptation to the assessment problem.

For a sparse graph, the majority of entries in the 2D array/matrix is None.
Adjacency matrices are commonly used when expecting a dense graph.
self._adj_matrix = [
[None, None, None, None, None],
[None, None, None, None, None],
["has campus in", "has campus in", None, None, None],
["lives in", None, "teaches at", None, None],
["lives in", None, "teaches at", None, None]

```
self._node_labels = [
    "Preston",
    "Larnaca",
    "UCLan",
    "Ollie",
    "Martin"
]
```


Adjacency matrix data structure

Task 3.5.1 b: Implement calculation of the length of a path.

```
# returns weight of the edge between i and j
#
def get_weight(self, i, j):
    return self._adj_matrix[i][j]
# the path is a list of node IDs
#
def get_length_of_path(self, path):
    length = 0
    for i in range(len(path) - 1):
        length += self.get_weight(path[i], path[i+1])
    return length
```


Travelling salesman problem (TSP)

Task 3.5.2a: No. of Hamilton cycles
A travelling salesman needs to visit all the cities, by a path that ends at the same city where it starts (a cycle).

No city may be visited twice. Every city must be visited exactly once. (Except for returning to the start.) These cycles are Hamilton cycles.

Assume that the initial/final node is fixed; let it be the node no. 0 .

How many cycles covering all nodes are there in a complete graph with n nodes, that is a graph where every node is adjacent to every other node?

No. of Hamilton cycles in a complete graph: $(n-1) \cdot(n-2) \cdot \ldots \cdot 2 \cdot 1=(n-1)$! $n=12$ nodes: $11!=39.9$ million cycles; $n=15$ nodes: $14!=87.2$ billion cycles.

TSP: Randomized approximation algorithm

