Logic expressivity: Tutorial 4.2 problem

False for n valuations: Complexity of the problem

Problem 4.2: Create a statement that becomes False for n valuations.

What is the complexity of the problem, i.e., the best possible asymptotic efficiency of an algorithm that solves it? Let us establish some lower bounds:

- For n False entries in the truth table, the size of the truth table must be at least n. Therefore, $m=O(\log n)$ atomic statements are needed.

Example: $n=37$; truth table size: 64 ; no. of atomic statements: $m=6$.

- Space for encoding one atomic statement: $O(\log m)=O(\log \log n)$.

Example: $n=2^{10,000} ; m=10,000 ;$ atomic statements $p_{0^{\prime}} \ldots, p_{9998^{\prime}} p_{9999}$.

Remark: Each atomic statement must occur (be written) at least once ...

False for n valuations: Complexity of the problem

Problem 4.2: Create a statement that becomes False for n valuations.

What is the complexity of the problem, i.e., the best possible asymptotic efficiency of an algorithm that solves it? Let us establish some lower bounds:

- For n False entries in the truth table, the size of the truth table must be at least n. Therefore, $m=O(\log n)$ atomic statements are needed.

Example: $n=37$; truth table size: 64 ; no. of atomic statements: $m=6$.

- Space for encoding one atomic statement: $O(\log m)=O(\log \log n)$. Example: $n=2^{10,000} ; m=10,000 ;$ atomic statements $p_{0^{\prime}} \ldots, p_{9998^{\prime}} p_{9999}$.
- Space \& time for the whole statement: $O(m \log m)=O(\log n \cdot \log \log n)$.

False for n valuations: Complexity of the problem

Problem 4.2: Create a statement that becomes False for n valuations.

What is the complexity of the problem, i.e., the best possible asymptotic efficiency of an algorithm that solves it? $m=O(\log n)$ atomic statements needed.

Lower bound: Requires at least $O(m \log m)=O(\log n \cdot \log \log n)$ space \& time.

Is there an algorithm that solves the problem in $O(\log n \cdot \log \log n)$ time? Yes.
Example: $n=37$; statement must be False for 37 out of 64 valuations:
$\frac{37}{64}=\frac{32}{64}+\frac{4}{64}+\frac{1}{64}=\frac{1}{2}+\left(\frac{1}{2} \cdot \frac{1}{8}\right)+\left(\frac{1}{2} \cdot \frac{1}{8} \cdot \frac{1}{4}\right)$

False for n valuations: Example, $n=37$

Problem 4.2: Create a statement that becomes False for n valuations.

Example: $n=37$; statement must be False for 37 out of 64 valuations:
$\frac{37}{64}=\frac{32}{64}+\frac{4}{64}+\frac{1}{64}=\frac{1}{2}+\left(\frac{1}{2} \cdot \frac{1}{8}\right)+\left(\begin{array}{c}1 \\ 2\end{array} \cdot \frac{1}{8} \cdot \frac{1}{4}\right) \quad 37=\left(\begin{array}{cccccc}1 & 0 & 0 & 1 & 0 & 1\end{array}\right)_{2}$

False for n valuations: Example, $n=37$

Problem 4.2: Create a statement that becomes False for n valuations.

