Number of truth tables: Tutorial 4.3 problem

Satisfiability of propositional logic statements

Question 4.3.1: Are the following propositional logic statements satisfiable?
$S_{\mathrm{a}}=((p \wedge r) \rightarrow(q \vee r)) \leftrightarrow(s \wedge \neg s)$
False
$S_{b}=(p \vee \neg q \vee \neg r \vee \neg s) \wedge((p \wedge r) \rightarrow(q \vee r)) \wedge \neg p \wedge q \wedge r \wedge s$ $p \vee \neg q \vee \neg r \vee \neg s \equiv \neg(\neg p \wedge q \wedge r \wedge s)$
$S_{c}=(p \leftrightarrow \neg p) \rightarrow((p \leftrightarrow \neg q) \wedge(q \leftrightarrow \neg r) \wedge(r \leftrightarrow \neg s) \wedge(s \leftrightarrow \neg t) \wedge(t \leftrightarrow \neg p))$ False
$S_{d}=\neg S_{c}$

Satisfiability of propositional logic statements

Question 4.3.1: Are the following propositional logic statements satisfiable?
$S_{\mathrm{a}}=((p \wedge r) \rightarrow(q \vee r)) \leftrightarrow(s \wedge \neg s)$
True False
$(p \wedge r) \rightarrow(q \vee r)$ is a tautology
$(s \wedge \neg s)$ is a contradiction
S_{a} is a contradiction
$S_{b}=(p \vee \neg q \vee \neg r \vee \neg s) \wedge((p \wedge r) \rightarrow(q \vee r)) \wedge \neg p \wedge q \wedge r \wedge s$
There is no valuation for which ($p \vee \neg q \vee \neg r \vee \neg s)$ and $(\neg p \wedge q \wedge r \wedge s)$ are both True. Therefore, S_{b} is a contradiction.
$S_{c}=(p \leftrightarrow \neg p) \rightarrow((p \leftrightarrow \neg q) \wedge(q \leftrightarrow \neg r) \wedge(r \leftrightarrow \neg s) \wedge(s \leftrightarrow \neg t) \wedge(t \leftrightarrow \neg p))$
False An implication can only become False if the left-hand side is True. That is impossible here. S_{c} is a tautology (and, hence, satisfiable).
$S_{d}=\neg S_{c}$
Since S_{C} is a tautology, $\neg S_{c}$ is a contradiction.

Enumeration of truth tables

Question 4.3.2a: Are there ≥ 1000 truth tables with four atomic statements?
Let us consider the case where there are $n=2$ atomic statements, p and q :

\boldsymbol{p}	\mathbf{q}	\boldsymbol{T}_{0}	\boldsymbol{T}_{1}	$\boldsymbol{T}_{\mathbf{2}}$	$\boldsymbol{T}_{\mathbf{3}}$	\ldots	\boldsymbol{T}_{14}	\boldsymbol{T}_{15}
False	False	False	False	False	False	\ldots	True	True
False	True	False	False	False	False	\ldots	True	True
True	False	False	False	True	True	\ldots	True	True
True	True	False	True	False	True	\ldots	False	True

For n atomic statements, there are 2^{n} different valuations; therefore, there are 2^{n} entries - each of which may be True or False - in the truth tables.

The total number of different truth tables is therefore $2^{\left(2^{n}\right)}$.
$n=2$: there are $2^{4}=16$ truth tables; $n=4$: there are $2^{16}=65,536$ truth tables.

Enumeration of truth tables

Question 4.3.2a: Are there ≥ 1000 truth tables with four atomic statements? Yes!

\mathbf{p}	\boldsymbol{q}	\boldsymbol{r}	\boldsymbol{s}	\boldsymbol{T}_{0}	\boldsymbol{T}_{1}	\boldsymbol{T}_{2}	\ldots	\boldsymbol{T}_{65535}
False	\ldots	True						
False	False	False	True	False	False	False	\ldots	True
False	False	True	False	False	False	False	\ldots	True
False	False	True	True	False	False	False	\ldots	True
False	True	False	False	False	False	False	\ldots	True
False	True	False	True	False	False	False	\ldots	True
False	True	True	False	False	False	False	\ldots	True
\ldots								
True	True	False	True	Frulse	False	False	\ldots	True
True	True	True	False	False	False	True	\ldots	True
True	True	True	True	False	True	False	\ldots	True

In general, there are $2^{\left(2^{n}\right)}$ truth tables; $n=4$: there are $2^{16}=65,536$ truth tables.

Enumeration of truth tables

Task 4.3.2b: Find two (semantically) different statements both entailed by R :
There, the premise R was given by $\neg((p \rightarrow q) \rightarrow(\neg q \wedge \neg r))$.

Entailment
 $$
R \models S
$$

("The premise R entails the conclusion S ")
All models of R are also models of S. S may still be True where R is False, i.e., S may have more models than R.

The statement $R \rightarrow S$ is a tautology.

> Two statements entailed by R :

$$
R \models R
$$

$R \vDash$ True

Enumeration of truth tables

Question 4.3.2c: How many propositional logic statements S, using p, q, and r only, with different truth tables exist, such that $R \models S$?
There, the premise R was given by $\neg((p \rightarrow q) \rightarrow(\neg q \wedge \neg r))$.

p	q	r	$(p \rightarrow q)$	$(\neg q \wedge \neg r)$	$((p \rightarrow q) \rightarrow(\neg q \wedge \neg r))$	R
False	False	False	True	True	True	False
False	False	True	True	False	False	True
False	True	False	True	False	False	True
False	True	True	True	False	False	True
True	False	False	False	True	True	False
True	False	True	False	False	True	False
True	True	False	True	False	False	True
True	True	True	True	False	False	True

All the True entries in the truth table of R must also be True for S.

Enumeration of truth tables

Question 4.3.2c: How many propositional logic statements S, using p, q, and r only, with different truth tables exist, such that $R \models S$?
There, the premise R was given by $\neg((p \rightarrow q) \rightarrow(\neg q \wedge \neg r))$.

p	q	r	$(p \rightarrow q)$	$(\neg q \wedge \neg r)$	$((p \rightarrow q) \rightarrow(\neg q \wedge \neg r))$	R
False	False	False	True	True	True	False
False	False	True	True	False	False	True
False	True	False	True	False	False	True
False	True	True	True	False	False	True
True	False	False	False	True	True	False
True	False	True	False	False	True	False
True	True	False	True	False	False	True
True	True	True	True	False	False	True

All the True entries in the truth table of R must also be True for S.
There are 3 False entries in the truth table of R; they may be True or False for S.
Therefore, there are $2^{3}=8$ semantically different S_{0}, \ldots, S_{7} entailed by R.

