Resolution:
 Tutorial 4.5 problem

4.5.1 Concepts

Literals: Atomic statements p, q, \ldots, and their negations $\neg p, \neg q, \ldots$
Clauses: A conjunction ("and") of literals, such as $p \wedge \neg q \wedge \neg r$, is a conjunctive clause. A disjunction ("or") of literals, such as $\neg p \vee q \vee r$, is a disjunctive clause.

Conjunctive normal form (CNF):

- A statement is in CNF if it is a conjunction of disjunctive clauses.
- It is in full CNF if all atomic statements appear in all disjunctive clauses.
- The full CNF version of a truth table has one clause per False valuation.

Entailment: R entails S if and only if every model of R is a model of S. $(R \models S$.)
Inference: Deduction of an entailment following a rule or a system of rules.
Resolution: Inference technique applied to CNF statements based on the rule $\left(p \vee L_{0} \vee L_{1} \vee \ldots\right) \wedge\left(\neg p \vee M_{0} \vee M_{1} \vee \ldots\right) \vDash\left(L_{0} \vee L_{1} \vee \ldots \vee M_{0} \vee M_{1} \vee \ldots\right)$.

4.5.1 Resolution (completeness for satisfiability)

Completeness of resolution:

- If a statement in CNF is a contradiction, an algorithm implementing resolution as an inference method succeeds at proving this in all cases; i.e., two clauses p_{i} and $\neg p_{i}$ for the same atomic statement are deduced.
- The same applies to proving that multiple statements are inconsistent.
- If resolution does not detect a contradiction, the statement is satisfiable.
- To check whether R is a tautology, resolution can be applied to $\neg R$.

Entailment: R entails S if and only if every model of R is a model of S. $(R \vDash S$.)
Inference: Deduction of an entailment following a rule or a system of rules.
Resolution: Inference technique applied to CNF statements based on the rule
$\left(p \vee L_{0} \vee L_{1} \vee \ldots\right) \wedge\left(\neg p \vee M_{0} \vee M_{1} \vee \ldots\right) \vDash\left(L_{0} \vee L_{1} \vee \ldots \vee M_{0} \vee M_{1} \vee \ldots\right)$.

4.5.2 From logic to graphs

Undirected graph; $p_{A B}$ representing "there is an edge between A and $B, "$ etc. How would we paraphrase the meaning of the propositional logic statements:

How many literals are there? Six: $p_{\mathrm{AB}}, \neg p_{\mathrm{AB}}, p_{\mathrm{AC}}, \neg p_{\mathrm{AC}}, p_{\mathrm{BC}}$, and $\neg p_{\mathrm{BC}}$.

4.5.3 Conjunctive normal form

Transformation to CNF. Rule: $(R \leftrightarrow S) \equiv(R \vee \neg S) \wedge(\neg R \vee S)$.
$S_{A}=\neg p_{A B} \vee \neg p_{A C}$

$S_{B}=p_{A B} \leftrightarrow \neg p_{B C}$

$$
p_{\mathrm{AB}} \leftrightarrow \neg p_{\mathrm{BC}}
$$

$$
\equiv\left(p_{\mathrm{AB}} \vee \neg \neg p_{\mathrm{BC}}\right) \wedge\left(\neg p_{\mathrm{AB}} \vee \neg p_{\mathrm{BC}}\right)
$$

$$
\equiv\left(p_{\mathrm{AB}} \vee p_{\mathrm{BC}}\right) \wedge\left(\neg p_{\mathrm{AB}} \vee \neg p_{\mathrm{BC}}\right)
$$

$S_{C}=p_{A C} \leftrightarrow p_{B C}$

$$
\begin{aligned}
p_{\mathrm{AC}} & \leftrightarrow \neg p_{\mathrm{BC}} \\
& \equiv\left(p_{\mathrm{AC}} \vee \neg p_{\mathrm{BC}}\right) \wedge\left(\neg p_{\mathrm{AC}} \vee p_{\mathrm{BC}}\right)
\end{aligned}
$$

Clauses: 0) $\neg p_{A B} \vee \neg p_{A C}$ 1) $p_{A B} \vee p_{B C}$ 2) $\neg p_{A B} \vee \neg p_{B C}$ 3) $p_{A C} \vee \neg p_{B C}$ 4) $\neg p_{A C} \vee p_{B C}$

4.5.4 Consistency: Common model

If multiple statements are consistent, they have a common model.
$S_{A}=\neg p_{A B} \vee \neg p_{A C}$
$\left(\neg p_{A B} \vee \neg p_{A C}\right)$
$S_{B}=p_{A B} \leftrightarrow \neg p_{B C}$
$\left(p_{A B} \vee p_{B C}\right) \wedge\left(\neg p_{A B} \vee \neg p_{B C}\right)$
$S_{C}=p_{A C} \leftrightarrow p_{B C}$
$\left(p_{\mathrm{AC}} \vee \neg p_{\mathrm{BC}}\right) \wedge\left(\neg p_{\mathrm{AC}} \vee p_{\mathrm{BC}}\right)$

"Vertex A has degree 0 or 1."
"Vertex B has degree 1."
"Vertex C has degree 0 or 2."

Clauses: 0) $\neg p_{A B} v \neg p_{A C}$ 1) $p_{A B} \vee p_{B C}$ 2) $\neg p_{A B} v \neg p_{B C}$ 3) $p_{A C} v \neg p_{B C}$ 4) $\neg p_{A C} \vee p_{B C}$

4.5.4 Consistency: Resolution

$$
\left(p \vee L_{0} \vee L_{1} \vee \ldots\right) \wedge\left(\neg p \vee M_{0} \vee M_{1} \vee \ldots\right) \vDash\left(L_{0} \vee L_{1} \vee \ldots \vee M_{0} \vee M_{1} \vee \ldots\right) .
$$

0) $\neg p_{A B} \vee \neg p_{A C}$ with 1) $p_{A B} \vee p_{B C}$
1) $p_{A B} \vee p_{B C} \quad$ with 2) $\neg p_{A B} \vee \neg p_{B C}$
resolves to 4) $\neg p_{A C} \vee p_{B C}$
resolves to $p_{A B} \vee \neg p_{A B}$ and $p_{B C} \vee \neg p_{B C}$
```
\(i=1\)
while i < len(clauses):
```

 for j in range(i):
 if direct_contradiction(clauses[i], clauses[j]):
 return False
 resolved_clauses = resolve(clauses[i], clauses[j])
 for c in resolved_clauses:
 if should_be_appended(c, clauses):
 clauses.append(c)
 \(i+=1\)
 return True
 Clauses: 0) $\neg p_{A B} \vee \neg p_{A C}$ 1) $p_{A B} \vee p_{B C}$ 2) $\neg p_{A B} \vee \neg p_{B C}$ 3) $p_{A C} \vee \neg p_{B C}$ 4) $\neg p_{A C} \vee p_{B C}$

4.5.4 Consistency: Resolution

$$
\left(p \vee L_{0} \vee L_{1} \vee \ldots\right) \wedge\left(\neg p \vee M_{0} \vee M_{1} \vee \ldots\right) \vDash\left(L_{0} \vee L_{1} \vee \ldots \vee M_{0} \vee M_{1} \vee \ldots\right)
$$

0) $\neg p_{A B} \vee \neg p_{A C}$ with 1) $p_{A B} \vee p_{B C}$
1) $p_{A B} \vee p_{B C} \quad$ with 2) $\neg p_{A B} \vee \neg p_{B C}$
2) $\neg p_{A B} v \neg p_{A C}$ with 3) $p_{A C} \vee \neg p_{B C}$
3) $p_{A B} \vee p_{B C} \quad$ with 3) $p_{A C} \vee \neg p_{B C}$
4) $\neg p_{A B} \vee \neg p_{B C}$ with 4) $\neg p_{A C} \vee p_{B C}$
5) $p_{A C} \vee \neg p_{B C} \quad$ with 4) $\neg p_{A C} \vee p_{B C}$ 0) $\neg p_{A B} \vee \neg p_{A C}$ with 5) $p_{A B} \vee p_{A C}$ 2) $\neg p_{A B} \vee \neg p_{B C}$ with 5) $p_{A B} \vee p_{A C}$
6) $\neg p_{A C} \vee p_{B C}$ with 5) $p_{A B} \vee p_{A C}$
resolves to 4) $\neg p_{A C} \vee p_{B C}$ resolves to $p_{A B} v \neg p_{A B}$ and $p_{B C} v \neg p_{B C}$ resolves to 2) $\neg p_{A B} V \neg p_{B C}$ resolves to 5) $p_{A B} \vee p_{A C}$ resolves to 0) $\neg p_{A B} \vee \neg p_{A C}$ resolves to $p_{A C} v \neg p_{A C}$ and $p_{B C} v \neg p_{B C}$ resolves to $p_{A B} v \neg p_{A B}$ and $p_{A C} v \neg p_{A C}$ resolves to 3) $p_{A C} v \neg p_{B C}$ resolves to 1) $p_{A B} \vee p_{B C}$

Clauses: 0) $\neg p_{A B} \vee \neg p_{A C}$ 1) $p_{A B} \vee p_{B C}$ 2) $\neg p_{A B} \vee \neg p_{B C}$ 3) $p_{A C} \vee \neg p_{B C}$ 4) $\neg p_{A C} \vee p_{B C}$

