

Resolution: Tutorial 4.5 problem

4.5.1 Concepts

Literals: Atomic statements $p, q, ..., and their negations <math>\neg p, \neg q, ...$

Clauses: A conjunction ("and") of literals, such as $p \land \neg q \land \neg r$, is a conjunctive clause. A disjunction ("or") of literals, such as $\neg p \lor q \lor r$, is a disjunctive clause.

Conjunctive normal form (CNF):

- A statement is in CNF if it is a **conjunction of disjunctive clauses**.
- It is in **full CNF** if all atomic statements appear in all disjunctive clauses.
- The full CNF version of a truth table has one clause per **False** valuation.

Entailment: *R* entails *S* if and only if every model of *R* is a model of *S*. ($R \models S$.)

Inference: Deduction of an entailment following a rule or a system of rules.

Resolution: Inference technique applied to CNF statements based on the rule

 $(\rho \vee L_0 \vee L_1 \vee ...) \wedge (\neg \rho \vee M_0 \vee M_1 \vee ...) \models (L_0 \vee L_1 \vee ... \vee M_0 \vee M_1 \vee ...).$

4.5.1 Resolution (completeness for satisfiability)

Completeness of resolution:

- If a statement in CNF is a contradiction, an algorithm implementing resolution as an inference method succeeds at proving this in all cases;
 i.e., two clauses p_i and ¬p_i for the same atomic statement are deduced.
- The same applies to proving that multiple statements are **inconsistent**.
- If resolution does not detect a contradiction, the statement is **satisfiable**.
- To check whether R is a **tautology**, resolution can be applied to $\neg R$.

Entailment: *R* entails *S* if and only if every model of *R* is a model of *S*. ($R \models S$.) **Inference:** Deduction of an entailment following a rule or a system of rules. **Resolution:** Inference technique applied to CNF statements based on the rule ($p \lor L_0 \lor L_1 \lor ...$) $\land (\neg p \lor M_0 \lor M_1 \lor ...) \models (L_0 \lor L_1 \lor ... \lor M_0 \lor M_1 \lor ...$).

4.5.2 From logic to graphs

Undirected graph; p_{AB} representing "there is an edge between A and B," etc.

How would we paraphrase the meaning of the propositional logic statements:

How many literals are there? Six: p_{AB} , $\neg p_{AB}$, p_{AC} , $\neg p_{AC}$, p_{BC} , and $\neg p_{BC}$.

CO2412

4.5.3 Conjunctive normal form

Transformation to CNF. Rule: $(R \leftrightarrow S) \equiv (R \vee \neg S) \land (\neg R \vee S)$.

Clauses: 0) $\neg p_{AB} \vee \neg p_{AC}$ 1) $p_{AB} \vee p_{BC}$ 2) $\neg p_{AB} \vee \neg p_{BC}$ 3) $p_{AC} \vee \neg p_{BC}$ 4) $\neg p_{AC} \vee p_{BC}$

CO2412

4.5.4 Consistency: Common model

If multiple statements are consistent, they have a common model.

Clauses: 0) $\neg p_{AB} \vee \neg p_{AC}$ 1) $p_{AB} \vee p_{BC}$ 2) $\neg p_{AB} \vee \neg p_{BC}$ 3) $p_{AC} \vee \neg p_{BC}$ 4) $\neg p_{AC} \vee p_{BC}$

CO2412

4.5.4 Consistency: Resolution

$$(p \vee L_0 \vee L_1 \vee ...) \wedge (\neg p \vee M_0 \vee M_1 \vee ...) \models (L_0 \vee L_1 \vee ... \vee M_0 \vee M_1 \vee ...).$$

Clauses: 0) $\neg p_{AB} \vee \neg p_{AC}$ 1) $p_{AB} \vee p_{BC}$ 2) $\neg p_{AB} \vee \neg p_{BC}$ 3) $p_{AC} \vee \neg p_{BC}$ 4) $\neg p_{AC} \vee p_{BC}$

CO2412

4.5.4 Consistency: Resolution

 $(p \vee L_0 \vee L_1 \vee \dots) \wedge (\neg p \vee M_0 \vee M_1 \vee \dots) \models (L_0 \vee L_1 \vee \dots \vee M_0 \vee M_1 \vee \dots).$

0) $\neg p_{AB} \vee \neg p_{AC}$ with 1) $p_{AB} \vee p_{BC}$ 1) $p_{AB} \vee p_{BC}$ with 2) $\neg p_{AB} \vee \neg p_{BC}$ 0) $\neg p_{AB} \vee \neg p_{AC}$ with 3) $p_{AC} \vee \neg p_{BC}$ 1) $p_{AB} \vee p_{BC}$ with 3) $p_{AC} \vee \neg p_{BC}$ 2) $\neg p_{AB} \vee \neg p_{BC}$ with 4) $\neg p_{AC} \vee p_{BC}$ 3) $p_{AC} \vee \neg p_{BC}$ with 4) $\neg p_{AC} \vee p_{BC}$ 0) $\neg p_{AB} \vee \neg p_{AC}$ with 5) $p_{AB} \vee p_{AC}$ 4) $\neg p_{AC} \vee p_{BC}$ with 5) $p_{AB} \vee p_{AC}$ resolves to 4) $\neg p_{AC} \vee p_{BC}$ resolves to $p_{AB} \vee \neg p_{AB}$ and $p_{BC} \vee \neg p_{BC}$ resolves to 2) $\neg p_{AB} \vee \neg p_{BC}$ resolves to 5) $p_{AB} \vee p_{AC}$ resolves to 0) $\neg p_{AB} \vee \neg p_{AC}$ resolves to $p_{AC} \vee \neg p_{AC}$ and $p_{BC} \vee \neg p_{BC}$ resolves to $p_{AB} \vee \neg p_{AB}$ and $p_{AC} \vee \neg p_{BC}$ resolves to 3) $p_{AC} \vee \neg p_{BC}$

Clauses: 0) $\neg p_{AB} \vee \neg p_{AC}$ 1) $p_{AB} \vee p_{BC}$ 2) $\neg p_{AB} \vee \neg p_{BC}$ 3) $p_{AC} \vee \neg p_{BC}$ 4) $\neg p_{AC} \vee p_{BC}$

CO2412