
Setting up your Python programming environment

Jupyter Notebook
Jupyter Notebook is an IDE for data science projects. This lab worksheet will walk you through how

to set up Jupyter Notebook on your local machine and how to start using it. A notebook integrates

code and its output into a single document that combines visualizations, narrative text,

mathematical equations, and other rich media.

Installation
To get started, install Anaconda. Libraries wrapped up in Anaconda include NumPy, SciPy, pandas,

and many others. Download the latest version of Anaconda for Python 3.7 (chose the appropriate

version 64/32 bits for your own machine); https://www.anaconda.com/download/

Install Anaconda by following the instructions on the download page and/or in the executable.

Under Linux, it may instead be best to proceed as follows:

 Install conda with your package manager. For example, if dnf is your package manager, the

command would be sudo dnf install conda. (You could then have to restart the terminal.)

 Create an environment, e.g., by the command conda create -n local, where “local” is the

name of the environment, followed by an initialization command depending on the shell,

such as conda init bash if it is bash. (Afterwards, it may be necessary to restart the terminal.)

 Activate the environment (command, e.g., conda activate local) and then install jupyter

using conda with the command conda install -c conda-forge jupyterlab.

 If this was successful, the Jupyter Notebook dashboard can be launched with the command

jupyter-notebook. By default, it is accessible through the URL http://localhost:8888/tree.

Running Jupyter
Under Linux, activate the environment (e.g., conda activate local; it may be convenient to add the

activation command to your ~/.bashrc or equivalent file), and then start Jupyter with jupyter-

notebook. On Windows, you can run Jupyter via a shortcut Anaconda adds to your start menu,

https://www.anaconda.com/download/
http://localhost:8888/tree
https://www.anaconda.com/download/

which will open a new tab in your default web browser that should look something like the following

screenshot.

This is the Notebook Dashboard, designed for managing Jupyter Notebooks. Think of it as the

launchpad for exploring, editing and creating your notebooks. The dashboard will give you access

only to the files and sub-folders contained within Jupyter’s start-up directory.

You may have noticed that the URL for the dashboard is something like http://localhost:8888/tree.

Localhost indicates that the content is being served from your local machine. Jupyter starts up a

local Python server, accessible through your web browser, making it platform independent and

opening the door to easier sharing on the web. The dashboard’s interface is mostly self-explanatory.

Now, browse to the folder in which you would like to create your first notebook, click the “New”

drop-down button in the top-right and select “Python 3” (or the version of your choice).

Each notebook uses its own tab because you can open multiple notebooks simultaneously. If you

switch back to the dashboard, you will see the new file Untitled.ipynb and you should see some

green text that tells you your notebook is running. Our first Jupyter Notebook will open in a new tab:

http://localhost:8888/tree

What is an ipynb File?
It will be useful to understand what this file really is. Each .ipynb file is a text file that describes the

contents of your notebook in JSON format (i.e., JavaScript Object Notation). Each cell and its

contents, including image attachments that have been converted into strings of text, is listed therein

along with some metadata. You can edit this yourself — if you know what you are doing! — by

selecting “Edit > Edit Notebook Metadata” from the menu bar in the notebook.

You can also view the contents of your notebook files by selecting “Edit” from the controls on the

dashboard, but the keyword here is “can“; there’s no reason other than curiosity to do so for this

lab, unless you really know what you are doing.

The Notebook Interface
Now that you have an open notebook in front of you, its interface will hopefully not look entirely

alien; it is essentially an advanced word processor. Check out the menus to get a feel for it,

especially take a few moments to scroll down the list of commands in the command palette, which is

the small button with the keyboard icon (or Ctrl + Shift + P).

There are two fairly prominent terms that you should notice, which are probably new to you: cells

and kernels are key to understanding Jupyter and to what makes it more than a word processor.

 A kernel is a “computational engine” that executes the code contained in a notebook

document.

 A cell is a container for text to be displayed in the notebook or code to be executed by the

notebook’s kernel.

Cells
We’ll return to kernels a little later, but first let’s come to grips with cells. Cells form the body of a

notebook. In the screenshot of a new notebook in the section above, that box with the green outline

is an empty cell.

There are two main cell types that we will cover:

 A code cell contains code to be executed in the kernel and displays its output below.

 A Markdown cell contains text formatted using Markdown and displays its output in-place

when it is run.

The first cell in a new notebook is always a code cell. Let’s test it out with a classic hello world

example. Type print('Hello World!') into the cell and click the run button Notebook Run Button in the

toolbar above or press Ctrl + Enter.

The result should look like this:

When you ran the cell, its output will have been displayed below and the label to its left will have

changed from In [] to In [1]. The output of a code cell also forms part of the document, which is why

you can see it. You can always tell the difference between code and Markdown cells because code

cells have that label on the left and Markdown cells do not.

The “In” part of the label is simply short for “Input,” while the label number indicates when the cell

was executed on the kernel — in this case the cell was executed first. Run the cell again and the label

will change to In [2] because now the cell was the second to be run on the kernel. It will become

clearer why this is so useful later on when we take a closer look at kernels.

From the menu bar, click Insert and select Insert Cell Below to create a new code cell underneath

your first and try out the following code to see what happens. Do you notice anything different?

This cell doesn’t produce any output, but it does take three seconds to execute. Notice how Jupyter

signifies that the cell is currently running by changing its label to In [*].

In general, the output of a cell comes from any text data specifically printed during the cells

execution, as well as the value of the last line in the cell, be it a lone variable, a function call, or

something else. For example:

You’ll find yourself using this almost constantly in your own projects, and we’ll see more of it later

on.

Keyboard Shortcuts
One final thing you may have observed when running your cells is that their border turned blue,

whereas it was green while you were editing. There is always one “active” cell highlighted with a

border whose color denotes its current mode, where green means “edit mode” and blue is

“command mode.”

So far we have seen how to run a cell with Ctrl + Enter, but there are plenty more. Keyboard

shortcuts are a very popular aspect of the Jupyter environment because they facilitate a speedy cell-

based workflow. Many of these are actions you can carry out on the active cell when it’s in

command mode.

Below, you’ll find a list of some of Jupyter’s keyboard shortcuts. You’re not expected to pick them up

immediately, but the list should give you a good idea of what’s possible.

 Toggle between edit and command mode with Esc and Enter, respectively.

 Once in command mode:

o Scroll up and down your cells with your Up and Down keys.

o Press A or B to insert a new cell above or below the active cell.

o M will transform the active cell to a Markdown cell.

o Y will set the active cell to a code cell.

o D + D (D twice) will delete the active cell.

o Z will undo cell deletion.

o Hold Shift and press Up or Down to select multiple cells at once.

 With multiple cells selected, Shift + M will merge your selection.

 Ctrl + Shift + -, in edit mode, will split the active cell at the cursor.

 You can also click and Shift + Click in the margin to the left of your cells to select them.

Go ahead and try these out in your own notebook. Once you’ve had a play, create a new Markdown

cell and we’ll learn how to format the text in our notebooks.

Markdown
Markdown is a lightweight, easy to learn markup language for formatting plain text. Its syntax has a

one-to-one correspondance with HTML tags, so some prior knowledge here would be helpful but is

definitely not a prerequisite. Remember that this article was written in a Jupyter notebook, so all of

the narrative text and images you have seen so far was achieved in Markdown. Let’s cover the basics

with a quick example.

Run the above cell and you will see the following:

When attaching images, you have three options:

 Use a URL to an image on the web.

 Use a local URL to an image that you will be keeping alongside your notebook, such as in the

same git repo.

 Add an attachment via “Edit > Insert Image”; this will convert the image into a string and

store it inside your notebook .ipynb file.

Note that this will make your .ipynb file much larger!

There is plenty more detail to Markdown, especially around hyperlinking, and it’s also possible to

simply include plain HTML. Once you find yourself pushing the limits of the basics above, you can

refer to the official guide.

Kernels
Behind every notebook runs a kernel. When you run a code cell, that code is executed within the

kernel and any output is returned back to the cell to be displayed. The kernel’s state persists over

time and between cells — it pertains to the document as a whole and not individual cells.

For example, if you import libraries or declare variables in one cell, they will be available in another.

In this way, you can think of a notebook document as being somewhat comparable to a script file,

except that it is multimedia. Let’s try this out to get a feel for it. First, we’ll import a Python package

and define a function.

Once we’ve executed the cell above, we can reference np and square in any other cell.

This will work regardless of the order of the cells in your notebook. You can try it yourself, let’s print

out our variables again.

No surprises here! But now let’s change y.

What do you think will happen if we run the cell containing our print statement again? We will get

the output Is 1 squared is 10?!

Most of the time, the flow in your notebook will be top-to-bottom, but it’s common to go back to

make changes. And if you ever wish to reset things, there are several incredibly useful options from

the Kernel menu:

https://daringfireball.net/projects/markdown/syntax

 Restart: restarts the kernel, thus clearing all the variables etc that were defined.

 Restart & Clear Output: same as above but will also wipe the output displayed below your

code cells.

 Restart & Run All: same as above but will also run all your cells in order from first to last.

If your kernel is ever stuck on a computation and you wish to stop it, you can choose the Interupt

option.

Choosing a Kernel
You may have noticed that Jupyter gives you the option to change kernel, and in fact there are many

different options to choose from. Back when you created a new notebook from the dashboard by

selecting a Python version, you were actually choosing which kernel to use.

Not only are there kernels for different versions of Python, but also for over 100
languages including Java, C, and even Fortran. Data scientists may be particularly interested in the

kernels for R and Julia, as well as both imatlab and the Calysto MATLAB Kernel for Matlab.

The SoS kernel provides multi-language support within a single notebook. Each kernel has its own

installation instructions, but will likely require you to run some commands on your computer.

Testing

Do test a few examples such as those given above, in particular in order to test whether libraries are

properly installed and can be included; e.g., by the example

import numpy as np

def randomlist(n, sig):

 data = []

 for i in range(n):

 data.append(sig * np.random.randn())

 return data

print(randomlist(8, 3))

It may be necessary to specifically install libraries, e.g., by conda install -c conda-forge numpy.

Remark

This document is based on the “Setting up Jupyter” file included in the Jupyter Notebook

distribution, with some minor modifications.

https://github.com/vatlab/SOS
https://github.com/calysto/matlab_kernel
https://github.com/imatlab/imatlab
https://github.com/JuliaLang/IJulia.jl
https://irkernel.github.io/
https://github.com/jupyter/jupyter/wiki/Jupyter-kernels
https://github.com/jupyter/jupyter/wiki/Jupyter-kernels

